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The item count technique is a survey methodology that is designed to elicit respondents’ truthful answers to sensitive questions such as
racial prejudice and drug use. The method is also known as the list experiment or the unmatched count technique and is an alternative to
the commonly used randomized response method. In this article, I propose new nonlinear least squares and maximum likelihood estimators
for efficient multivariate regression analysis with the item count technique. The two-step estimation procedure and the Expectation Max-
imization algorithm are developed to facilitate the computation. Enabling multivariate regression analysis is essential because researchers
are typically interested in knowing how the probability of answering the sensitive question affirmatively varies as a function of respondents’
characteristics. As an empirical illustration, the proposed methodology is applied to the 1991 National Race and Politics survey where
the investigators used the item count technique to measure the degree of racial hatred in the United States. Small-scale simulation studies
suggest that the maximum likelihood estimator can be substantially more efficient than alternative estimators. Statistical efficiency is an
important concern for the item count technique because indirect questioning means loss of information. The open-source software is made
available to implement the proposed methodology.
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1. INTRODUCTION AND EXAMPLE

In survey research, an important methodological challenge
has been the elicitation of truthful answers to sensitive ques-
tions. For a long time, the randomized response method intro-
duced by Warner (1965) has been a dominant technique to ad-
dress this problem, and many refinements have been proposed.
An alternative method that has recently begun to attract much
attention of applied empirical researchers is the item count tech-
nique. This method was originally proposed by Miller (1984)
and is also known as the list experiment or the unmatched count
technique. A similar survey methodology was studied earlier
by Raghavarao and Federer (1979) who called it the block total
response method.

The item count technique has been used across a wide va-
riety of disciplines. Applications include self-reports of racial
prejudice (Kuklinski, Cobb, and Gilens 1997; Gilens, Sni-
derman, and Kuklinski 1998), attitudes towards immigration
(Janus 2010), drug use (Droitcour et al. 1991), employee theft
(Wimbush and Dalton 1997), and risky sexual behavior (LaBrie
and Earleywine 2000). Although the validity of this method re-
mains to be investigated more rigorously, some have reported
promising initial results showing that the item count technique
can successfully elicit truthful answers to sensitive questions
(e.g., Tsuchiya, Hirai, and Ono 2007; Holbrook and Krosnick
2010; Coutts and Jann 2011).

Kosuke Imai is Assistant Professor, Department of Politics, Princeton Uni-
versity, Princeton NJ 08544 (E-mail: kimai@princeton.edu; url: http://imai.
princeton.edu). Additional statistical methods useful for item count technique
are developed in the companion article (Blair and Imai 2010b). The open-source
software, list: Statistical Methods for the Item Count
Technique and List Experiment, is available for download at the
Comprehensive R Archive Network (http://cran.r-project.org/package=list).
Previous versions of this article were ciculated under the title of “Statistical
Inference for the Item Count Technique.” I thank Thomas Yee for his help in
fitting the Beta-Binomial model and useful comments. Thanks also to Graeme
Blair, Patrick Brandt, and Adam Glynn for useful discussions. Detailed com-
ments from the associate editor and anonymous referees significantly improved
the presentation and analysis of this article. The Institute for Quantitative So-
cial Science at Harvard University provided the computational support for the
simulation studies. Financial support from the NSF grant (SES–0849715) is
acknowledged.

To illustrate the basic idea of the item count technique, con-
sider the question of how to measure racial hatred against black
people. Asking white respondents directly whether or not they
dislike black people may be problematic because the respon-
dents may give a “right” but untruthful answer. To avoid this
possible social desirability bias, Sniderman, Tetlock, and Pi-
azza (1992) employ the item count technique in the 1991 Na-
tional Race and Politics Survey. Specifically, the respondents
were randomly selected into the treatment and control groups.
The control group was then presented with the following ques-
tion:
Now I’m going to read you three things that sometimes make people angry
or upset. After I read all three, just tell me HOW MANY of them upset you.
(I don’t want to know which ones, just how many.)

(1) “the federal government increasing the tax on gasoline;”
(2) “professional athletes getting million-dollar-plus salaries;”
(3) “large corporations polluting the environment.”

How many, if any, of these things upset you?

The treatment group was given the same question except that
the sensitive item was added to the list used for the control
group,
Now I’m going to read you four things that sometimes make people angry or
upset. After I read all four, just tell me HOW MANY of them upset you. (I don’t
want to know which ones, just how many.)

(1) “the federal government increasing the tax on gasoline;”
(2) “professional athletes getting million-dollar-plus salaries;”
(3) “large corporations polluting the environment;”
(4) “a black family moving next door to you.”

How many, if any, of these things upset you?

Note that for both treatment and control groups, the order
of items on the lists can be randomized in order to mitigate
the order effects. This indirect questioning technique attempts
to provide a greater degree of privacy to respondents by ask-
ing only the total number of items that make them angry rather
than having them answer each item separately. Moreover, be-
cause the treatment and control groups are randomly selected,
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the proportion of the respondents whose answer is affirmative
to the sensitive item can be estimated under certain assump-
tions by simply computing the difference in the mean response
between those two groups.

Finally, although a detailed discussion is beyond the scope of
this article, I emphasize that when applying the item count tech-
nique the control items (i.e., the items presented to the control
group) must be carefully selected. In particular, the privacy is
no longer protected if respondents in the treatment group wish
to answer all sensitive and control questions either affirmatively
or negatively. If this problem occurs to many respondents, then
the validity of the survey measurement may be compromised.
Increasing the number of control items partially addresses this
problem, but the resulting estimator will be statistically ineffi-
cient. See Blair and Imai (2010b) for the discussion of statistical
methods that address these and other failures of the item count
technique.

Despite the growing use of the item count technique in ap-
plied research, there exist relatively few methodological re-
search on the topic. The most commonly used method has been
based on a simple difference-in-means estimator. Tsuchiya
(2005) extends this method and considers an efficient estima-
tion in different subpopulations defined by a discrete covari-
ate. Chaudhuri and Christofides (2007) propose to improve the
standard item count technique by slightly modifying the way
the sensitive item is incorporated and derive a new estima-
tor. Glynn (2010) suggests an adjustment to the difference-in-
means estimator, which yields greater efficiency at the cost of
bias. Finally, Corstange (2009) proposes an approximate likeli-
hood method, but his method is not applicable to the standard
item count technique (see Blair and Imai 2010b, who propose
the maximum likelihood estimator for this and other alternative
designs based on the methodology proposed in this article).

In this article, new nonlinear least squares (NLS) and maxi-
mum likelihood (ML) estimators are developed for an efficient
multivariate analysis with the item count technique. Enabling a
multivariate statistical analysis is essential because researchers
are typically interested in knowing how the probability of an-
swering the sensitive question affirmatively varies as a function
of respondents’ characteristics as well as estimating the popula-
tion proportion of such respondents. For example, in their anal-
ysis of the 1991 National Race and Politics Survey introduced
above, Kuklinski, Cobb, and Gilens (1997) were interested in
estimating the difference between Southern and non-Southern
whites with respect to the population proportion of those who
answer the black family item affirmatively while adjusting for
certain demographic differences between them. Employing the
difference-in-means estimator separately in each strata, as com-
monly done in applied research, is problematic especially when
the number of strata is large.

To address this concern, I develop two new multivariate re-
gression estimators. First, I consider the NLS estimator. For
the NLS estimator, a computationally simple two-step estima-
tion procedure is used to obtain consistent estimates. An advan-
tage of the NLS estimator is that it provides a consistent esti-
mate so long as the conditional mean functions are correctly
specified. The NLS estimator also includes the conventional
difference-in-means and the linear least squares estimators as
special cases.

Second, the likelihood function is derived for the item count
technique by regarding the answer to the sensitive question as

missing data. This formulation naturally leads to the use of the
Expectation-Maximization algorithm for the reliable computa-
tion of the ML estimator. Finally, the proposed methodology
is applied to the 1991 National Race and Politics survey ques-
tion introduced above. In addition, small-scale simulation stud-
ies suggest that the ML estimator can be substantially more ef-
ficient than other alternative estimators. The open-source soft-
ware that implements the proposed estimators is available for
download at the Comprehensive R Archive Network as Blair
and Imai (2010a).

2. THE PROPOSED METHODOLOGY

In this section, the proposed methodology is described. First,
the notation and the required identification assumptions are in-
troduced. I then develop two new estimators for the item count
technique.

2.1 The Standard Design and Assumptions

Suppose that a simple random sample of N respondents is
obtained from a population. I consider the standard design for
the item count technique where there are J control items and
one sensitive item. Let Ti represent the binary “treatment” status
for respondent i; Ti = 0 means that the respondent is presented
with the partial list of J control items whereas Ti = 1 indicates
that the respondent is presented with the full list of J + 1 items
including a sensitive question as well as control questions.

Next, suppose that each respondent possesses a latent poten-
tial response to each control item j = 1, . . . , J, which may de-
pend on the respondent’s treatment status t. Using the potential
outcomes notation (e.g., Holland 1986), I denote this variable
by Zij(t), which is equal to 1 if the answer is affirmative and
equals 0 otherwise. For example, Zij(1) = 1 means that respon-
dent i’s latent answer to the jth control item is affirmative un-
der the treatment condition. Furthermore, let Zi,J+1(1) denote
respondent i’s latent answer to the sensitive question under the
treatment condition. Recall that only the treatment group is pre-
sented with the sensitive item and so Zi,J+1(0) is not defined.

Since respondents are instructed to give the total number of
items on the list rather than answer each item separately, the
potential responses can be defined as Yi(1) = ∑J+1

j=1 Zij(1) and

Yi(0) = ∑J
j=1 Zij(0) where Yi(1) ∈ {0, . . . , J + 1} and Yi(0) ∈

{0, . . . , J}. Finally, the observed outcome is given by Yi =
Yi(Ti) and a vector of pretreatment covariates is denoted by Xi

where the support of Xi is given by X .
Under this setting, the identification assumptions of the item

count technique can be formally expressed as follows:

Assumption 1 (Randomization of the Treatment). For any re-
spondent i = 1, . . . ,N,{{Zij(0),Zij(1)}J

j=1,Zi,J+1(1)
} ⊥⊥ Ti.

Assumption 2 (No Design Effect). For any respondent i =
1, . . . ,N,

J∑
j=1

Zij(0) =
J∑

j=1

Zij(1).

Assumption 3 (No Liar). For any respondent i = 1, . . . ,N,
Zi,J+1(1) represents a truthful response.
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Note that Assumption 1 is guaranteed to hold because re-
searchers conduct the randomization of respondents into the
treatment and control groups. In contrast, Assumption 2 may be
violated if respondents give different answers to control items
depending on whether or not the sensitive item is included in the
list. This type of design effect may occur if respondents evalu-
ate items on the list relative to one another. Thus, this identify-
ing assumption suggests that one must carefully choose control
items in the item count technique. Finally, Assumption 3 im-
plies that respondents give truthful answers about the sensitive
item when asked indirectly about it using the item count tech-
nique. Note that we do not assume the answers to control items
are truthful. For control items, we only need to assume that they
are not affected by the addition of the sensitive item to the list.

In sum, Assumptions 2 and 3 together eliminate the possibil-
ity that the coexistence of the sensitive and control items in a
single list influence responses in one way or another. In prac-
tice, however, these assumptions need to be made with care.
For example, researchers are often concerned about the possi-
bility that the location of the sensitive item in the treatment list
may affect respondents’ answers. To minimize such potential
order effects, they often randomize the order of items on the list.
However, this may lead to the violation of the Stable Unit Treat-
ment Value Assumption, which requires no multiple versions of
treatment (Rubin 1990). Addressing these design effects is be-
yond the scope of this article, but interested readers may refer to
Blair and Imai (2010b) who develop several methods to address
these potential violations of the identification assumptions (see
also VanderWeele and Hernán 2010).

2.2 Identification

Before describing the proposed estimators, I briefly consider
the issue of identification. First, it is immediate that under As-
sumptions 1 and 2, we have

Yi(1) − Yi(0) = Zi,J+1(1). (1)

This justifies the following standard difference-in-means esti-
mator that is commonly used to analyze the item count tech-
nique,

τ̂ = 1

N1

N∑
i=1

TiYi − 1

N0

N∑
i=1

(1 − Ti)Yi, (2)

where N1 = ∑N
i=1 Ti and N0 = N −N1. In particular, τ̂ is an un-

biased estimate of the population average response to the sensi-
tive item, that is, E(τ̂ ) = Pr(Zi,J+1(1) = 1).

Furthermore, as shown by Glynn (2010), it is important to
note that under Assumptions 1 and 2 one can can identify the
joint distribution Pr(Zi,J+1(1) = z,Yi(t) = y) for each t = 0,1
and z = 0,1. To see this formally, first note that we have
Pr(Yi(0) = y) = Pr(Yi | Ti = 0) for each y = 1, . . . , J by As-
sumption 1. Second, we have

Pr(Zi,J+1(1) = 1 | Yi(0) = y)

= Pr(Yi(1) = y + 1,Yi(0) = y)

Pr(Yi(0) = y | Ti = 0)
(3)

= Pr(Yi ≤ y | Ti = 0) − Pr(Yi ≤ y | Ti = 1)

Pr(Yi = y | Ti = 0)
, (4)

where the second equality follows from Assumptions 1 and 2.

2.3 The Nonlinear Least Squares Estimator

Next, I consider the generalization of the standard difference-
in-means estimator in Equation (2) to a multivariate analysis
based on the following additive nonlinear regression model,

Yi = f (Xi,γ ) + Tig(Xi, δ) + εi, (5)

where E(εi | Xi,Ti) = 0 and (γ , δ) is a vector of unknown pa-
rameters. The model implies that f (x,γ ) = E(Yi(0) | Xi = x)

and g(x, δ) = Pr(Zi,J+1(1) = 1 | Xi = x) for x ∈ X . Typically,
researchers are interested in estimating g(x, δ) so that they can
determine the association between respondents’ characteristics,
Xi, and their answer to the sensitive item, Zi,J+1(1).

To estimate (δ,γ ), I propose the following computationally
simple two-step procedure. First, obtain the NLS estimate of γ
from the control group Ti = 0, and denote it by γ̂ NLS. Then,
compute the NLS estimate of δ from the treatment group, δ̂NLS,
by setting γ equal to the estimate obtained from the first step,
γ̂ NLS.

Given this two-step procedure, when computing the stan-
dard error for δ̂NLS, one must take into account for the fact
that γ is estimated. In the Appendix, the asymptotic sampling
distribution of this two-step NLS estimator is derived for a
case of logistic models where it is assumed that f (Xi,γ ) =
J logit−1(X�

i γ ) and g(Xi, δ) = logit−1(X�
i δ). The asymptotic

sampling distribution for other parametric models such as pro-
bit links can be derived in a similar way.

The main advantage of the NLS estimator is that it provides
a consistent estimator so long as the conditional mean func-
tions, that is, f (x,γ ) and g(x, δ), are correctly specified. The
NLS estimator also includes two important estimators as spe-
cial cases. First, when f (x,γ ) = γ and g(x, δ) = δ, this proce-
dure yields τ̂ defined in Equation (2), thereby generalizing the
standard difference-in-means estimator. Next, if we assume lin-
ear functional form f (x,γ ) = x�γ and g(x, δ) = x�δ, we have
the following linear regression model with interaction terms:

Yi = X�
i γ + TiX�

i δ + εi, (6)

where E(εi | Xi,Ti) = 0. While it may not be appropriate for
modeling discrete outcomes, this linear model can be eas-
ily estimated without the two-step procedure. Note that the
heteroscedasticity-consistent robust standard errors must be
computed for this model.

2.4 The Maximum Likelihood Estimator

The two-step NLS estimator is attractive in terms of its com-
putational simplicity and connection to the difference-in-means
and linear least squares estimators. However, one disadvan-
tage is the potential loss of statistical efficiency. Also, it is
not straightforward to extend this approach to more complex
models such as hierarchical models. Therefore, I derive the
maximum likelihood estimator by modeling the joint distribu-
tion of (Yi(0),Zi,J+1(1)), which is identifiable under Assump-
tions 1 and 2 as shown in Section 2.2.

To construct the likelihood function, notice that there exist
the following four possible types of respondents according to
their values of (Ti,Yi):

• (Ti,Yi) = (1,0): these respondents have (Yi(0),

Zi,J+1(1)) = (0,0)
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• (Ti,Yi) = (1, J + 1): these respondents have (Yi(0),

Zi,J+1(1)) = (J,1)

• (Ti,Yi) = (0, y): these respondents have either (Yi(0),

Zi,J+1(1)) = (y,1) or (y,0)

• (Ti,Yi) = (1, y) where 0 < y < J + 1: these respondents
have either (Yi(0),Zi,J+1(1)) = (y,0) or (y − 1,1).

Given this setup, if we let hz(y;x,ψz) = Pr(Yi(0) = y |
Zi,J+1(1) = z,Xi = x) and g(x, δ) = Pr(Zi,J+1(1) = 1 | Xi = x),
then the observed-data likelihood function can be written as

Lobs(ψ0,ψ1, δ; {Yi,Ti,Xi}N
i=1)

=
∏

i∈J (1,0)

(1 − g(Xi, δ))h0(0;Xi,ψ0)

×
∏

i∈J (1,J+1)

g(Xi, δ)h1(J;Xi,ψ1)

×
J∏

y=1

∏
i∈J (1,y)

{
g(Xi, δ)h1(y − 1;Xi,ψ1)

+ (1 − g(Xi, δ))h0(y;Xi,ψ0)
}

×
J∏

y=0

∏
i∈J (0,y)

{
g(Xi, δ)h1(y;Xi,ψ1)

+ (1 − g(Xi, δ))h0(y;Xi,ψ0)
}
, (7)

where J (t, y) represents a set of respondents with (Ti,Yi) =
(t, y). As mentioned before, researchers are typically interested
in making inferences about the answers to the sensitive item,
that is, g(x, δ), more than the control items.

The likelihood function in Equation (7) is potentially diffi-
cult to optimize because it has two separate mixture compo-
nents. Thus, I construct the Expectation-Maximization (EM)
algorithm (Dempster, Laird, and Rubin 1977) by regarding
Zi,J+1(1) as partially missing data. In this framework, given the
complete data (Zi,J+1(1),Yi,Ti), the complete-data likelihood
function can be written as

Lcom
(
ψ0,ψ1, δ; {Zi,J+1(1),Yi,Ti,Xi}N

i=1

)

=
N∏

i=1

{
g(Xi, δ)h1(Yi − 1;Xi,ψ1)

Ti

× h1(Yi;Xi,ψ1)
1−Ti

}Zi,J+1(1)

× {
(1 − g(Xi, δ))h0(Yi;Xi,ψ0)

}1−Zi,J+1(1)
.

The E-step of the algorithm can then be derived by computing
the following conditional expectation of the missing data,

wi = E(Zi,J+1(1) | Yi = y,Ti = t,Xi = x)

= Pr(Zi,J+1(1) = 1 | Ti = t,Xi = x)

× Pr(Yi = y | Zi,J+1(1) = 1,Ti = t,Xi = x)

/Pr(Yi = y | Ti = t,Xi = x)

= Pr(Zi,J+1(1) = 1 | Xi = x)

× Pr(Yi(0) = y − t | Zi,J+1(1) = 1,Ti = t,Xi = x)

/Pr(Yi = y | Ti = t,Xi = x)

= Pr(Zi,J+1(1) = 1 | Xi = x)

× Pr(Yi(0) = y − t | Zi,J+1(1) = 1,Xi = x)

/Pr(Yi = y | Ti = t,Xi = x)

= g(x, δ)h1(y − t;x,ψ1)

g(x, δ)h1(y − t;x,ψ1) + (1 − g(x, δ))h0(y;x,ψ0)
, (8)

where the second, third, and fourth equalities follow from the
Bayes’ rule, Assumption 2, and Assumption 1, respectively.
Note that wi = 1 if Yi = J + 1 and Ti = 1 whereas wi = 0 if
Yi = 0 and Ti = 1.

Then, the M-step will maximize the following objective
function with respect to (ψ0,ψ1, δ) given the observed data
{Yi,Ti,Xi}N

i=1 as well as {wi}N
i=1, which is evaluated at the cur-

rent values of the parameters

Q(ψ0,ψ1, δ; {Yi,Ti,Xi,wi}N
i=1)

=
N∑

i=1

[
wi

{
log g(Xi, δ)

+ Ti log h1(Yi − 1;Xi,ψ1) + (1 − Ti) log h1(Yi;Xi,ψ1)
}

+ (1 − wi)
{
log(1 − g(Xi, δ)) + log h0(Yi;Xi,ψ0)

}]
.

The advantage of the EM algorithm is that in the M-step each of
the three terms, g(x, δ), h0(y;x,ψ0), h1(y;x,ψ1), can be inde-
pendently maximized based on their corresponding weighted
log-likelihood functions. Thus, as I illustrate below with the
beta-binomial model, the standard model fitting routine can be
used to implement the EM algorithm.

Finally, given the likelihood inference framework in Sec-
tion 2.4, Bayesian inference can be conducted relatively easily.
Naturally, the data augmentation algorithm can be used to ex-
ploit the missing data framework as done in the EM algorithm.
In the context of the beta-binomial model, a Markov chain
Monte Carlo (MCMC) algorithm can be constructed so that
conditional on the model parameters, the missing data Zi,J+1(1)

is sampled from the Bernoulli distribution with the probability
wi given in Equation (8). Then, given this draw of Zi,J+1(1), the
standard MCMC algorithms for the logistic and beta-binomial
regression models can be used to update the model parameters.

2.5 The Beta-Binomial Model

To illustrate the above likelihood inference framework, I con-
sider the following model:

Zi,J+1(1) | Xi = x
indep.∼ Binom(1, logit−1(x�δ))

Yi(0) | πi,Zi,J+1(1) = z,Xi = x
indep.∼ Binom(J,πi)

πi | Zi,J+1(1) = z,Xi = x

indep.∼ Beta

(
μz(x)(1 − ρz(x))

ρz(x)
,
(1 − μz(x))(1 − ρz(x))

ρz(x)

)

for z = 0,1 where 0 < μz(x) < 1 and 0 < ρz(x) < 1 for all
x ∈ X , which is the support of Xi. This is the beta-binomial
model with the mean E(Yi(0) | Zi,J+1(1) = z,Xi = x) = Jμz(x)



Imai: Item Count Technique 411

and the variance V(Yi(0) | Zi,J+1(1) = z,Xi = x) = Jμz(x)(1 −
μz(x)){1 + ρz(x)(J − 1)}. For example, we can use the logistic
model, that is, μz(x) = logit−1(x�ψ z). This parameterization
was used by Lee and Sabavala (1987) and slightly differs from
the standard parameterization (e.g., Griffiths 1973). The advan-
tage of this alternative parameterization is the ease of interpre-
tation. In particular, ρz(x) can be interpreted as the intrarespon-
dent correlation across any two control questions among re-
spondents who possess specific characteristics x and have re-
sponse z to the sensitive question. Finally, μz(x) can be inter-
preted as the average response to J control items conditional on
the response for the sensitive item.

The EM algorithm for this model is relatively straightfor-
ward. Specifically, the E-step requires the evaluation of the
beta-binomial density function and the M-step consists of the
fitting of the weighted logistic regression [for g(x, δ)] and the
weighted beta-binomial regression [for hz(y;x,ψ z)]. For fitting
the weighted beta-binomial regression, I use the algorithm as
implemented in the VGAM package (Yee and Hastie 2003; Yee
2010).

3. EMPIRICAL AND SIMULATIONS STUDIES

In this section, the methods developed in Section 2 are ap-
plied to the question from the 1991 National Race and Politics
Survey that is described in Section 1. In addition, small scale
simulation studies are conducted to compare the performance
of the ML estimator with that of alternative estimators.

For the computation of all empirical and simulation results,
the following strategy is employed. For the NLS estimator, the
nls() function in R is used. For the ML estimation, I use the
EM algorithm described in Section 2.4, and the asymptotic vari-
ance is calculated based on the numerical approximation via the
optim() function in R.

3.1 Racial Prejudice and the “New South”

In their influential article, Kuklinski, Cobb, and Gilens
(1997) analyze the question from the 1991 National Race
and Politics Survey that is described in Section 1. The au-
thors present the evidence against the prevalent notion of “New
South,” which states that during the late 1970s and 1980s the
South underwent the transformation where antiblack preju-
dice among Southern whites has declined to the level similar
to the prejudice among non-Southern whites. (The definition
of the South includes Alabama, Arkansas, Florida, Georgia,
Louisiana, Mississippi, North Carolina, South Carolina, Texas,
and Virginia).

Using the standard difference-in-means estimator, that is, τ̂

in Equation (2), they find that a large proportion of Southern
whites answer affirmatively to the question whether “a black
family moving next door to you” will make them angry whereas
very few non-Southern whites do so. This difference is statisti-
cally significant and used as main evidence for the conclusion
that there still exists a significant amount of racial prejudice in
the South.

After presenting the above evidence, Kuklinski, Cobb, and
Gilens (1997, pp. 334–335) point out one possible objection to
their analysis.

So far our discussion has implicitly assumed that the higher level of prejudice
among white Southerners results from something uniquely ‘southern,’ what
many would call southern culture. This assumption could be wrong. If white
southerners were older, less educated, and the like—characteristics normally
associated with greater prejudice—then demographics would explain the re-
gional difference in racial attitudes, leaving culture as little more than a small
and relatively insignificant residual.

To address this concern, the authors compare the marginal dis-
tributions of demographic variables between Southern and non-
Southern whites (table 3 on p. 337), and show that they are
somewhat similar. This is then used as evidence to support their
conclusion that demographic characteristics cannot explain the
difference between the South and the non-South.

Here, I apply the proposed method and reexamine the ques-
tion of whether there exists the difference between Southern
and non-Southern whites even after taking into account other
demographic characteristics. Specifically, in addition to the
variable indicating whether a respondent lives in a Southern
state, I include three demographic variables—age, education,
and gender—that are used by the original authors (see table 4
on p. 339) as the pretreatment variables Xi. I follow the orig-
inal coding where education is measured as a binary variable
representing whether respondents attended college, although I
do not dichotomize the age variable like the original analysis.
The sample consists of 1213 white respondents, of which 285
are Southerners.

The linear and nonlinear least squares estimators as well as
ML estimators are computed. For the ML estimation, the data
shows little overdispersion and hence I use the binomial model,
which is a limiting special case of the beta-binomial model
described in Section 2.5. In addition, for the ML estimation,
two models are fitted, one with the constraint h0(y;x,ψ0) =
h1(y;x,ψ1) and the other without it. Substantively, this con-
straint implies that a respondent’s answer to the sensitive item
is not correlated with his/her answer to the control items after
adjusting for the four pretreatment variables.

Table 1 presents the estimated coefficients for all four mod-
els. Across all four models, the estimated coefficient for the
South variable (highlighted in gray) is positive in the model
for the sensitive item. This estimated coefficient is statistically
significantly different from zero at the conventional 5% level for
the NLS and constrained ML estimators. The result implies that
on average Southern whites are more likely to be angered by a
black family moving next door than non-Southern whites even
after adjusting for the demographic differences. In the models
for the sensitive item, the standard errors for the constrained
ML estimates are substantially smaller than those for the NLS
estimates. Given the difficulty of directly interpreting these co-
efficients (other than those from the linear least squares), a di-
rect comparison across four models will be conducted when
discussing Figure 1 below.

Furthermore, the assumption of the independence between
the answer to the sensitive item and those to the control items
can be statistically tested within the framework of the ML esti-
mation. Specifically, the likelihood ratio test can be conducted
to test the null hypothesis is that the constraint holds. The p-
value from this hypothesis test is 0.760, implying the failure to
reject the null hypothesis. Thus, if I take the constrained model
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Table 1. Estimated coefficients from the item count technique regression models where the sensitive item is whether or not “a black family
moving next door to you” will make (white) respondents angry. The key coefficient of interest is the one for the variable South (highlighted

in gray), which indicates whether or not a respondent lives in one of the Southern states. All the coefficients except the linear least
squares estimates are based on logistic regression models

Least squares estimator Maximum likelihood estimator

Linear Nonlinear Constrained model Unconstrained model

Variables Est. SE Est. SE Est. SE Est. SE Est. SE

Sensitive item
Intercept −0.434 0.160 −7.084 3.669 −5.508 1.021 −6.226 1.045
South 0.202 0.118 2.490 1.268 1.675 0.559 1.379 0.820
Age 0.007 0.003 0.026 0.031 0.064 0.016 0.065 0.021
Male 0.180 0.098 3.097 2.829 0.846 0.494 1.366 0.612
College 0.114 0.098 0.612 1.030 −0.315 0.474 −0.182 0.569

Control item h0(y;x,ψ0) h1(y;x,ψ1)

Intercept 2.406 0.105 1.388 0.187 1.191 0.144 1.156 0.156 3.781 2.159
South −0.180 0.074 −0.277 0.116 −0.292 0.097 −0.299 0.107 −0.270 0.590
Age 0.002 0.002 0.003 0.004 0.003 0.003 0.003 0.003 −0.013 0.016
Male −0.202 0.065 −0.332 0.107 −0.251 0.082 −0.218 0.086 −1.689 1.633
College −0.394 0.064 −0.662 0.113 −0.516 0.084 −0.488 0.087 −0.954 0.715

as the final model, the result supports the conclusion of the orig-
inal analysis that Southern whites are on average more likely
to possess an anti-black sentiment than non-Southern counter-
parts, and this difference is statistically significant even after
adjusting for certain demographic differences.

Finally, based on the fitted models listed in Table 1 as well as
the models without covariates, Figure 1 presents the estimated
proportions of Southern (squares) and non-Southern (circles)
whites who are angered by “A black family moving next door
to you.” For the NLS and ML estimators with covariates, the re-

sults are obtained by averaging over the sample distribution of
covariates. The solid lines represent the 95% asymptotic confi-
dence intervals. The ML estimates are based on the constrained
model. The results show that the ML estimators have substan-
tially shorter confidence intervals than the other estimators, il-
lustrating the potential efficiency gain of a multivariate analysis.
Indeed, unlike the other estimators, the asymptotic confidence
intervals for the ML estimator do not overlap with zero, which
is consistent with the fact that the proportion is bounded below
by zero (though of course this pattern does not generally hold).

Figure 1. Estimated proportion of whites who are angered by “a black family moving next door to you” based on different estimation
methods. Each open square, open circle, and solid triangle represent the estimated proportion for Southern whites, that for non-Southern whites,
and the difference between those two proportions, respectively. The solid lines represent the 95% asymptotic confidence intervals. The maximum
likelihood estimates are based on the binomial model without the constraint (those given in columns 5 and 6 of Table 1). For the models with
covariates, the results are averaged over the sample distribution of covariates.



Imai: Item Count Technique 413

Figure 2. Simulation results with no covariates. The data are generated according to the constrained binomial model without covariates for
the sample sizes of 500, 1000, and 2500. Plots represent bias, root mean square error, and the coverage of 90% confidence interval for the
estimated proportion of affirmative answer to the sensitive item. The performance of the maximum likelihood (ML, solid circles) estimator is
compared with that of the difference-in-means estimator (open circles). The results are based on 5000 Monte Carlo simulations.

3.2 Simulation Studies

I conduct two small-scale simulation studies to examine the
relative performance of the ML estimator over the other alterna-
tives. First, we compare the ML estimator with the difference-
in-means estimator, which is a special case of our NLS estima-
tor when there exist no covariates. I sample the response vari-
able using the ML estimates based on the constrained binomial
model as the true values. For example, the true proportion of
affirmative answer to the sensitive item is set to 0.154. I gener-
ate the data according to this binomial model and compute bias,
root mean square error (RMSE), and the coverage of 90% con-
fidence intervals using three different sample sizes, that is, 500,
1000, and 2500. In this setting, we expect both estimators to be
unbiased but the ML estimator to have smaller variance than the
difference-in-means estimator because the former incorporates
the knowledge about the distribution of the response variable.

Figure 2 presents the simulation results, which are based on
5000 independent Monte Carlo draws. As expected, both esti-
mators exhibit little bias across sample sizes, whereas the ML
estimator has smaller RMSE than the difference-in-means es-
timator. The confidence intervals for the two estimators have
appropriate coverage especially when the sample size is large.
The result suggests that in the analysis of item count technique
incorporating the knowledge of response distribution can lead
to a substantial efficiency gain. This finding is consistent with
the empirical example given above and is important because re-
searchers must recoup the efficiency loss due to indirect ques-
tioning.

Finally, another small-scale simulation study is conducted to
examine the relative efficiency of the ML estimator over the
NLS estimator in the situations where covariates are available.
To make the data generating process somewhat realistic, I take
the survey data analyzed in Section 3.1 and sample covariates
from the multivariate normal distribution whose mean vector
and variance matrix are equal to the sample counterparts of the
race data. For the true values of the coefficients, the estimated
coefficients from the ML constrained binomial model in Ta-
ble 1 are used. The overdispersion parameter ρ is set to 0.25

to induce a moderate degree of positive correlation among con-
trol items. Finally, the outcome variable is sampled according
to the beta-binomial model presented in Section 2.5 with the
constraint h0(y;x,ψ0) = h1(y;x,ψ1).

The sample sizes are set to 1000, 2500, and 5000. A total
of 5000 Monte Carlo simulations are conducted for each sam-
ple size, and the bias, RMSE, and the coverage probability of
the 90% asymptotic confidence intervals are estimated for both
the NLS and ML estimators. For the ML estimator, the con-
strained beta-binomial model is fitted. Note that this data gen-
erating process is also consistent with the NLS model. The goal
of this simulation study, therefore, is to assess the degree of rel-
ative efficiency loss the NLS estimator would incur by not in-
corporating the distributional assumption (in comparison with
the ML estimator which is under this setting is known to be
asymptotically the best unbiased estimator).

Figure 3 summarizes the simulation results for four coef-
ficients corresponding each of the covariates (rows). As ex-
pected, the ML estimator (solid circles) outperforms the NLS
estimator in terms of bias and RMSE, and this difference can
be substantial especially when the sample size is small. Across
all coefficients, the coverage of the 90% asymptotic confidence
intervals are reasonably close to its nominal coverage rate for
both estimators even when the sample size is small. Overall,
the simulation results suggest that the potential efficiency gain
of the ML estimator is large if the distributional assumption of
the model is correct.

4. CONCLUDING REMARKS AND
FUTURE RESEARCH

Eliciting truthful answers to sensitive questions has been
one of the main challenges for survey research. Although
statisticians have extensively studied the randomized response
method, the item count technique has recently emerged as a
viable alternative among applied empirical researchers across
a number of disciplines. One important advantage of the item
count technique over the randomized response method is that
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Figure 3. Simulation results with covariates. The data are generated according to the constrained beta-binomial model for the sample sizes
of 1000, 2500, and 5000. Each row represents the coefficient for a specific covariate and the columns represent the statistics evaluating the
performance of the nonlinear least squares (NLS, open circles) and maximum likelihood (ML, solid circles) estimators. The results are based on
5000 Monte Carlo simulations.

it does not require respondents to conduct randomization. This
ease of implementation has allowed many applied researchers
to use the item count technique when designing their own sur-
veys. Another advantage is that respondents can easily under-
stand why the item count technique provides privacy. Indeed,
some scholars find that the item count technique outperforms
the randomized response method for various sensitive questions
(Coutts and Jann 2011).

While the item count technique offers a promising method
to ask sensitive survey questions, many methodological chal-
lenges remain. One major problem, which is addressed in this
article, is the lack of efficient multivariate regression technique
applicable for this survey methodology. In this article, I de-
velop the NLS and ML estimators to fulfill this gap. The em-
pirical and simulation studies illustrate the potential efficiency
gain of the proposed methods especially when the knowledge
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of response distribution is incorporated. The likelihood infer-
ence framework developed in this article also will serve as the
foundation for building more sophisticated modeling strategies
such as Bayesian analysis and hierarchical modeling that may
be required in more complex empirical applications.

Finally, future research should address potential failures of
the item count technique. Specifically, statistical methods need
to be developed for detecting and adjusting for the violations
of the key identifying assumptions that underlie the item count
technique (formalized as Assumptions 2 and 3 in this article)
(see e.g., Blair and Imai 2010b; Glynn 2010). The development
of such methods should shed light on effective ways in which
applied researchers design and analyze survey questions based
on the item count technique.

APPENDIX: THE ASYMPTOTIC SAMPLING
DISTRIBUTION OF THE TWO–STEP NONLINEAR

LEAST SQUARES ESTIMATOR FOR
LOGISTIC MODELS

I follow the analytical strategy outlined in Newey and McFadden
(1994, section 6) by treating the two-step estimator as a method of
moments estimator which solves the following first order conditions
with probability approaching one,

1
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Thus, under the standard regularity conditions (Hansen 1982), the
two-step estimator is consistent. The asymptotic sampling distribution
is given by

√
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