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1 Comparison with Standard Approaches

Within each simulation study conducted in Section 4 of the manuscript, we also examine the performance

of the standard model selection procedures commonly used in the literature; the Bayesian Information

Criterion (BIC) (Schwarz, 1978) and the Vuong test (Vuong, 1989). Specifically, we record, according to

these model selection methods, which model is selected or if no model is selected at all. For the Vuong

test the p-value of 0.05 was used as the threshold, whereas for the BIC the absolute difference of 8 was

used.

Figure 1 presents the results. Here, we plot the percentage of times Model 1 is chosen given that

one of the two models is selected. Both methods tend to support one model disproportionately when

the mixture probability, π1 is close to 0 or 1. For example, if 80% of observations were generated by

Model 1 and 20% by Model 2, both methods would almost never choose Model 2. Unlike the mixture

model which recovers π1 fairly well in this case, the standard model selection procedures ignore the fact

that some observations are consistent with Model 2. More concerning is the performance of these tests
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Figure 1: Percentage of Times Model 1 Chosen by the Vuong Test (top row) and the Bayesian Informa-
tion Criterion (bottom row) When A Model is Selected. Simulations are conducted for continuous (left
column) and binary (right column) outcome variables with the sample size of 1, 000 (dashed lines) and
5, 000 (solid lines). The vertical axis represents the percentage of times Model 1 is chosen given that
either model is chosen.

at intermediate values of π1. For example, when an exactly half of observations comes from each of the

two theories, i.e., π1 = 0.5, these tests may incorrectly select one of the two models (though the Vuong

test often fails to reject the null hypothesis of no difference).

These results hold irrespective of the outcome variable type and the sample size. While standard

model selection procedures have some desirable characteristics when all of the data is generated by one

model versus the other (Clarke, 2007), when the data generating process follows a mixture of different

models these tests can be misleading. In contrast, the mixture models can handle the situation where

almost all observations come from one theory, by yielding a large estimated value for the proportion of

observations consistent with that theory.

2 Semi-parametric Mixture Modeling without Clustering

Next, we assess the robustness of the above results by relaxing the clustering assumption to allow for the

possibility that different individual votes for the same bill may be consistent with different theories. We

2



15 20 25 30 35

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

House
E

st
im

at
ed

 P
ro

ba
bi

lit
y 

of
 B

ei
ng

 C
on

si
st

en
t 

 w
ith

 th
e 

R
ic

ar
do

−
V

in
er

 M
od

el
●

●●●●●●●

●●●
●●●●●

●

●●

●

●
●●●

●

●
●●

●

●

●

●

●

●
●●●
●
●
●●

●

●

●●

●

●

●

●

●

●

●
●
●●●●

●

●●●●

●

●●

●
●
●●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●

●●●●●●●

●

●

●

●

●

●●

●

●

●

●

●

●
●
●

●

●

●
●
●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●●●

●

●●●●

●

●

●●

●●●

●

●
●

●

●

●

●

●

●●

●

●●●
●

●

●

●

●
●
●●●

●●

●
●

●

●

●●

●
●

●

●

●

●●●

●

●

●

●
●●

●●

●●●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●●●

●
●

●

●

●●●●
●

●

●●●●
●●

●

●

●●

●

●

●●●●

●

●

●

●

●●●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●●
●

●

●

●

●●

●

●
●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●●●

●●

●

●

●

Factor Specificity

Figure 2: π of Ricardo-Viner model as a function of factor specificity. Model estimated EM with a
generalized additive model (GAM) allowing for a smooth influence of the factor specificity variable.
Model includes bill level fixed effects.

also relax the parametric assumption made about the relationship between the level of factor specificity

and the appropriateness of each theory so that we do not a priori assume the relationship is monotonic.

Finally, following Hiscox, we include bill fixed effects. In sum, we use the following model,

fSS(Yij | Xij, θSS) = logit−1(β0j + β1profitij + β2manufactureij + β3farmij) (1)

fRV(Yij | Xij, θRV) = logit−1(γ0j + γ1exportij + γ2importij) (2)

πRV(Wj, φRV) = logit−1(δ0 + s(factorj)) (3)

where s(·) represents the unknown smooth function. We use the Generalized Additive Models (Hastie

and Tibshirani, 1990) within the EM algorithm to estimate the smooth function as well as other model

parameters. This illustrates the flexibility of finite mixture models where sophisticated models such as

semi-parametric models can be fitted in a relatively straightforward manner.

Figure 2 summarizes the results for the House where the solid line represents the estimated mixing

probability π and box plots represent the distribution of vote-specific posterior probabilities ζ for each

trade bill. The overall result is similar to what we found above. Across much of the range, the estimated
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mixing probability monotonically increases as the level of factor specificity goes up although a slight

nonlinear relationship appears to exist when the level of factor specificity is low. Unlike the previous

analysis, however, the posterior probabilities vary considerably across legislators’ votes for any given

bill. This is expected given that we have relaxed the clustering assumption. The finding suggests that

while the results are consistent with the theoretical expectation, the amount of unexplained variation is

rather large.

3 Classified Trade Bills

Table 1 provides a list of trade bills that are classified to either the Stolper-Samuelson or Ricardo-Viner

model according to our proposed method and assuming each vote from one rival theory.

4 Illustration of Pitfalls of Mixture Modeling via Simulation

We conduct another set of two theory mixture simulation studies to empirically illustrate some of the

pitfalls discussed above. To make the simulation setup realistic, we use the trade policy preference

data analyzed in Section 4.1 of the main text. Specifically, the true values of model parameters are

set to their estimates from the mixture model, presented in Table 1 of the main text. The exception is

that the coefficient for the factor specificity variable is varied in order to produce different proportions

of observations consistent with each theory. We then sample covariates from the multivariate normal

distribution with the mean and variance equal to their sample counterparts. Finally, the two types of

outcome variables are sampled by adding an independent standard normal error term for the continuous

outcome variable and using the bernoulli distribution with the logit link function for the binary outcome

variable.

Figure 3 shows the results where the format of all plots is identical to that of Figure 1 of the main

text (see the caption of Figure 1 of the main text for details). The results show that the mixture model

performs well for the linear model with the continuous outcome while the performance is not ideal when

the proportion becomes more extreme. This makes sense because binary variables are in general less

informative than continuous variables. As expected, a larger sample size improves the performance of

the mixture model. With 5, 000 observations, the mixture model recovers π1 almost perfectly in the
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Figure 3: Results of the Two Theory Mixture Model Simulation Study based on the Trade Policy Pref-
erence Data. The format of the figure is identical to that of Figure 1 of the main text. See the caption
of Figure 1 of the main text for details. The eight plots of the figure together show that the proposed
method performs better when the outcome variable is continuous, the sample size is larger, and a theory-
predicting variable is present.

linear case and even in the binary case the performance is significantly improved. Finally, in the case

of binary model, the availability of the theory-predicting variable helps especially in the cases where

one theory receives much greater support than the other. Indeed, when the sample size is large and the

theory-predicting variable is available, the binary mixture model performs reasonably well.1

A similar observation can be made for the performance of our proposed method for identifying

observations that are statistically significantly consistent with each theory. The right four plots in Figure 3

show the classification success rates of the proposed method. Each of plot of the two right columns

uses the same simulation setup as the corresponding plot in the two left columns. We set the false

discovery rate to α = 0.1, which means that if the method is working appropriately we would expect the

classification success rates to be approximately 90%.

As it is evident in the figure, the proposed classification method works well in all the linear cases

1We note that with a low sample size, binary dependent variable, no theory predictive variable, a low proportion of

observations from Model 1, the estimate of π1 is higher than it should be. In this case model 1 included more covariates than

model 2, possibly suggesting a bias towards less parsimonious theories in these extreme conditions.
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with the continuous outcome variable (third column), regardless of the sample size and the availability

of theory-predicting variable. In contrast, in the binary outcome variable case (fourth column), the

method has a difficult time, correctly classifying the observations to theories. In addition, the proportion

of classified observations is quite small when the outcome variable is binary and the theory-predicting

variable is not available. For example, with a sample size of N = 5, 000 in the binary case around

only 10% of observations are classified without the theory-predicting variable but this roughly triples

when the theory-predicting variable is included. As expected, we find that a larger sample size (solid

line) and the availability of theory-predicting variable (upper-right corner) help dramatically improve the

performance of the method.

Together with the evidence given in Section 4 of the main text, the set of simulation studies presented

here illustrate the fact that mixture models demand far more from the data than standard regression

models. When the data contain less information (e.g., smaller sample, binary outcome, lack of theory-

predicting variable), the performance of the proposed mixture modeling approach may not be desirable.
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