Papers and Software

- Collaborators: Luke Keele, Dustin Tingley, and Teppei Yamamoto
- “A General Approach to Causal Mediation Analysis”
- “Causal Mediation Analysis in R”
- R package mediation
Causal inference is a central goal of social science and public policy research. Randomized experiments are seen as gold standard. Design and analyze observational studies to replicate experiments. But, experiments are a black box. Can only tell whether the treatment causally affects the outcome. Not how and why the treatment affects the outcome. Qualitative research uses process tracing.

How can quantitative research be used to identify causal mechanisms?

Overview of the Talk

- **Goal**: Convince you that statistics can play a role in identifying causal mechanisms.
- **Method**: Causal Mediation Analysis

\[\text{Mediator, } M \]

\[\text{Treatment, } T \rightarrow \text{Outcome, } Y \]

- Direct and indirect effects; intermediate and intervening variables
- Path analysis, structural equation modeling
Causal Mediation Analysis in American Politics

- The political psychology literature on media framing
- Nelson et al. (APSR, 1998)

Causal Mediation Analysis in Comparative Politics

- Resource curse thesis

Authoritarian government

Civil war

Natural resources

Slow growth

Causes of civil war: Fearon and Laitin (APSR, 2003)
Causal Mediation Analysis in International Relations

- The literature on international regimes and institutions

Power and interests are mediated by regimes

![Diagram showing causal mediation analysis](image)

- **Current Practice in the Discipline**

 - Regression
 \[Y_i = \alpha + \beta T_i + \gamma M_i + \delta X_i + \epsilon_i \]
 - Each coefficient is interpreted as a causal effect
 - Sometimes, it's called *marginal effect*
 - Idea: increase \(T_i \) by one unit while holding \(M_i \) and \(X_i \) constant

- The Problem: *Post-treatment bias*
- If you change \(T_i \), that may also change \(M_i \)
- Usual advice: only include causally prior (or pre-treatment) variables
- But, then you lose causal mechanisms!
Statistical Framework of Causal Inference

- Units: \(i = 1, \ldots, n \)
- "Treatment": \(T_i = 1 \) if treated, \(T_i = 0 \) otherwise
- Observed outcome: \(Y_i \)
- Pre-treatment covariates: \(X_i \)
- Potential outcomes: \(Y_i(1) \) and \(Y_i(0) \) where \(Y_i = Y_i(T_i) \)

<table>
<thead>
<tr>
<th>Voters (i)</th>
<th>Contact (T_i)</th>
<th>Turnout (Y_i(1))</th>
<th>Age (X_i)</th>
<th>Party ID (X_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>20</td>
<td>D</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>?</td>
<td>55</td>
<td>R</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>?</td>
<td>40</td>
<td>R</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td>(n)</td>
<td>1</td>
<td>0</td>
<td>62</td>
<td>D</td>
</tr>
</tbody>
</table>

- Causal effect: \(Y_i(1) - Y_i(0) \)

Notation for Causal Mediation Analysis

- Binary treatment (can be generalized): \(T_i \in \{0, 1\} \)
- Mediator: \(M_i \)
- Outcome: \(Y_i \)
- Observed covariates: \(X_i \)
- Potential mediators: \(M_i(t) \) where \(M_i = M_i(T_i) \)
- Potential outcomes: \(Y_i(t, m) \) where \(Y_i = Y_i(T_i, M_i(T_i)) \)
Defining and Interpreting Causal Mediation Effects

- **Total causal effect:**
 \[\tau_i \equiv Y_i(1, M_i(1)) - Y_i(0, M_i(0)) \]

- **Causal mediation effects:**
 \[\delta_i(t) \equiv Y_i(t, M_i(1)) - Y_i(t, M_i(0)) \]

- Change the mediator from \(M_i(0) \) to \(M_i(1) \) while holding the treatment constant at \(t \)
- Indirect effect of the treatment on the outcome through the mediator under treatment status \(t \)
- \(Y_i(t, M_i(t)) \) is observable but \(Y_i(t, M_i(1 - t)) \) is not
- Different from *controlled* direct effects: \(Y_i(t, m) - Y_i(t, m') \)
- Not applicable if the mediator is manipulated

- **Direct effects:**
 \[\zeta_i(t) \equiv Y_i(1, M_i(t)) - Y_i(0, M_i(t)) \]

- Change the treatment from 0 to 1 while holding the mediator constant at \(M_i(t) \)

- Total effect = mediation (indirect) effect + direct effect:
 \[\tau_i = \delta_i(t) + \zeta_i(1 - t) = \frac{1}{2} \sum_{t=0}^{1} \{ \delta_i(t) + \zeta_i(t) \} \]

- Quantities of interest: Average Causal Mediation Effects,
 \[\bar{\delta}(t) \equiv \mathbb{E}(\delta_i(t)) = \mathbb{E}\{ Y_i(t, M_i(1)) - Y_i(t, M_i(0)) \} \]
The Proposed Identification Assumption

Assumption 1 (Sequential Ignorability)

\[\{ Y_i(t', m), M_i(t) \} \perp \perp T_i \mid X_i = x, \]
\[Y_i(t', m) \perp \perp M_i \mid T_i = t, X_i = x \]

- \(\{ Y_i(t, m), M_i(t) \} \perp \perp T_i = t \mid X_i = x \) is not sufficient
- \(Y_i(t, m) \perp \perp M_i \mid T_i = t, X_i = x \) is not sufficient

- Weaker than Pearl (2001) if the treatment is randomized
- Cannot condition on post-treatment confounders that are causally prior to the mediator
- If such confounders are exist, an additional assumption, e.g., no-interaction assumption, is necessary (Robins)

Nonparametric Identification and Inference

Theorem 1 (Nonparametric Identification)

Under Assumption 1,

\[\bar{\delta}(t) = \int \int \mathbb{E}(Y_i \mid M_i, T_i = t, X_i) \left\{ dP(M_i \mid T_i = 1, X_i) - dP(M_i \mid T_i = 0, X_i) \right\} dP(X_i), \]
\[\bar{\zeta}(t) = \int \int \left\{ \mathbb{E}(Y_i \mid M_i, T_i = 1, X_i) - \mathbb{E}(Y_i \mid M_i, T_i = 0, X_i) \right\} dP(M_i \mid T_i = t, X_i) dP(X_i). \]

- Two regressions:
 \[\mu_{tm}(x) \equiv \mathbb{E}(Y_i \mid T_i = t, M_i = m, X_i = x), \]
 \[\lambda_t(x) \equiv f(M_i \mid T_i = t, X_i = x). \]
- When \(M_i \) is discrete, \(\lambda_{tm}(x) \equiv \Pr(M_i = m \mid T_i = t, X_i = x) \), and
 \[\hat{\delta}(t) = \frac{1}{n} \left\{ \sum_{i=1}^{n} \sum_{m=0}^{J-1} \hat{\mu}_{tm}(X_i) \left(\hat{\lambda}_{1m}(X_i) - \hat{\lambda}_{0m}(X_i) \right) \right\}. \]
Theorem 2 (Identification under LSEM)

Consider the following linear structural equation model

\[M_i = \alpha_2 + \beta_2 T_i + \epsilon_{2i}, \]
\[Y_i = \alpha_3 + \beta_3 T_i + \gamma M_i + \epsilon_{3i}. \]

Under Assumption 1, the average causal mediation effects are identified as \(\bar{\delta}(0) = \bar{\delta}(1) = \beta_2 \gamma. \)

- Run two regressions and multiply two coefficients (Baron-Kenny)!
- No need to run: \(Y_i = \alpha_1 + \beta_1 T_i + \epsilon_1i \)
- Direct effect: \(\beta_3 \)
- Total effect: \(\beta_2 \gamma + \beta_3 \)

Relaxing the no-interaction assumption:

\[Y_i = \alpha_3 + \beta_3 T_i + \gamma M_i + \kappa T_i M_i + \epsilon_{2i} \]

Then, \(\bar{\delta}(t) = \beta_2 (\gamma + t\kappa) \)

The product formula applies to the nonparametric identification with a binary mediator:

\[\bar{\delta}(t) = \{ \mathbb{E}(Y_i | M_i = 1, T_i = t, X_i) - \mathbb{E}(Y_i | M_i = 0, T_i = t, X_i) \} \]
\[\times \{ \Pr(M_i = 1 | T_i = 1, X_i) - \Pr(M_i = 1 | T_i = 0, X_i) \} \]
Need for Sensitivity Analysis

- The sequential ignorability assumption is often too strong
- Need to assess the robustness of findings via sensitivity analysis
- **Question**: How large a departure from the key assumption must occur for the conclusions to no longer hold?

Parametric sensitivity analysis by assuming

\[\{ Y_i(t', m), M_i(t) \} \perp T_i \mid X_i = x \]

but not

\[Y_i(t', m) \perp M_i \mid T_i = t, X_i = x \]

- Possible existence of unobserved *pre-treatment* confounder

Parametric Sensitivity Analysis

- **Sensitivity parameter**: \(\rho \equiv \text{Corr}(\epsilon_{2i}, \epsilon_{3i}) \)
- Sequential ignorability implies \(\rho = 0 \)
- Set \(\rho \) to different values and see how mediation effects change

Theorem 3 (Identification with a Given Error Correlation)

\[
\bar{\delta}(0) = \bar{\delta}(1) = \beta_2 \left(\frac{\sigma_{12}}{\sigma_2^2} - \frac{\rho}{\sigma_2} \sqrt{\frac{1}{1 - \rho^2} \left(\sigma_2^2 - \frac{\sigma_{12}^2}{\sigma_2^2} \right)} \right),
\]

where \(\sigma_j^2 \equiv \text{var}(\epsilon_{ji}) \) for \(j = 1, 2 \) and \(\sigma_{12} \equiv \text{cov}(\epsilon_{1i}, \epsilon_{2i}) \).

- When do my results go away completely?
- \(\bar{\delta}(t) = 0 \) if and only if \(\rho = \text{Corr}(\epsilon_{1i}, \epsilon_{2i}) \) (easy to compute!)
Facilitating Interpretation

- How big is ρ?
- An unobserved (pre-treatment) confounder formulation:
 \[\varepsilon_{2i} = \lambda_2 U_i + \epsilon'_{2i} \quad \text{and} \quad \varepsilon_{3i} = \lambda_3 U_i + \epsilon'_{3i}, \]
- Assume $Y_i(t', m) \perp M_i \mid T_i = t, U_i = u$
- Assume also $\epsilon'_{2i} \perp U_i$ and $\epsilon'_{3i} \perp U_i$
- Proportion of previously unexplained variance explained by the unobserved confounder
 \[R^*_M \equiv \frac{\text{var}(\varepsilon_{2i}) - \text{var}(\epsilon'_{2i})}{\text{var}(\varepsilon_{2i})} \quad \text{and} \quad R^*_Y \equiv \frac{\text{var}(\varepsilon_{3i}) - \text{var}(\epsilon'_{3i})}{\text{var}(\varepsilon_{3i})} \]

- Proportion of original variance explained by the unobserved confounder
 \[\tilde{R}^2_M \equiv \frac{\text{var}(\varepsilon_{2i}) - \text{var}(\epsilon'_{2i})}{\text{var}(M_i)} \quad \text{and} \quad \tilde{R}^2_Y \equiv \frac{\text{var}(\varepsilon_{3i}) - \text{var}(\epsilon'_{3i})}{\text{var}(Y_i)} \]

- Specify $\text{sgn}(\lambda_2 \lambda_2)$ and R^*_M, R^*_Y (or $\tilde{R}^2_M, \tilde{R}^2_Y$)

 \[\rho = \text{sgn}(\lambda_2 \lambda_3) R^*_M R^*_Y = \frac{\text{sgn}(\lambda_2 \lambda_3) \tilde{R}_M \tilde{R}_Y}{\sqrt{(1 - R^2_M)(1 - R^2_Y)}}, \]

 where R^2_M and R^2_Y are based on

 \[M_i = \alpha_2 + \beta_2 T_i + \varepsilon_{2i} \]
 \[Y_i = \alpha_3 + \beta_3 T_i + \gamma M_i + \varepsilon_{3i} \]
How does media framing affect citizens’ political opinions?

News stories about the Ku Klux Klan rally in Ohio

Free speech frame ($T_i = 0$) and public order frame ($T_i = 1$)

Randomized experiment with the sample size = 136

Mediator: a scale measuring general attitudes about the importance of public order

Outcome: a scale measuring tolerance for the Klan rally

Expected findings: negative mediation effects

Analysis under Sequential Ignorability

<table>
<thead>
<tr>
<th></th>
<th>Parametric</th>
<th>Nonparametric</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Mediation Effects</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Free speech frame $\hat{\delta}(0)$</td>
<td>-0.451</td>
<td>-0.374</td>
</tr>
<tr>
<td></td>
<td>$[-0.871, -0.031]$</td>
<td>$[-0.823, 0.074]$</td>
</tr>
<tr>
<td>Public order frame $\hat{\delta}(1)$</td>
<td>-0.566</td>
<td>-0.596</td>
</tr>
<tr>
<td></td>
<td>$[-1.081, -0.050]$</td>
<td>$[-1.168, -0.024]$</td>
</tr>
<tr>
<td>Average Total Effect $\hat{\tau}$</td>
<td>-0.540</td>
<td>-0.627</td>
</tr>
<tr>
<td></td>
<td>$[-1.207, 0.127]$</td>
<td>$[-1.153, -0.099]$</td>
</tr>
</tbody>
</table>

With the no-interaction assumption

Average Mediation Effect $\hat{\delta}(0) = \hat{\delta}(1)$

$[-0.969, -0.051]$
Parametric Sensitivity Analysis

- Unobserved pre-treatment confounder (e.g., political ideology)

![Graph showing sensitivity parameter and average mediation effect](image)

Proportion of unexplained variance explained by an unobserved confounder

Kosuke Imai (Princeton) Causal Mechanisms April 13, 2009 23 / 26
Quantitative analysis can be used to identify causal mechanisms!
Estimate causal mediation effects rather than marginal effects
Wide applications in social science disciplines

Generalization: identification, inference, and sensitivity analysis
linear and nonlinear relationships
parametric and nonparametric models
continuous and discrete mediators
various outcome data types
multiple mediators
development of easy-to-use statistical software