Robust Estimation of Inverse Probability Weights for Marginal Structural Models

Kosuke Imai
Princeton University

Atlantic Causal Inference Conference

May 21, 2013

Joint work with Marc Ratkovic
Motivation

- Central role of propensity score in causal inference
 - Adjusting for observed confounding in observational studies
 - Generalizing experimental and instrumental variables estimates

- Causal inference in longitudinal data
 - Marginal Structural Models (MSMs)
 - Inverse probability weighting for dynamic treatment regimes
 - Sensitivity to propensity score model misspecification
 - Difficulty of balance checking

- Covariate Balancing Propensity Score (CBPS)
 - Estimate propensity score by optimizing covariate balance
 - Generalize the cross-section case to the longitudinal setting
 - Balances within each observed treatment sequence
 - Balances across all potential future treatment sequences
CBPS in the Cross-Section Case (JRSSB, in-press)

- **Setup:**
 - $T_i \in \{0, 1\}$: binary treatment
 - X_i: observed pre-treatment covariates
 - $\Pr(T_i = 1 \mid X_i)$: Propensity score

- **Covariate balancing conditions:**

\[
\mathbb{E} \left\{ \frac{1 \{T_i = 0\} X_i}{\Pr(T_i = 0 \mid X_i)} \right\} = \mathbb{E} \left\{ \frac{1 \{T_i = 1\} X_i}{\Pr(T_i = 1 \mid X_i)} \right\}
\]

- This can be rewritten as:

\[
\mathbb{E} \left\{ (-1)^{T_i} w_i X_i \right\} = 0 \quad \text{where} \quad w_i = \frac{1}{P(T_i \mid X_i)}
\]

- Generalized method of moments (GMM) or empirical likelihood
Marginal Structural Models (MSMs): A Review

- **Setup:**
 - $T_{i1}, T_{i2} \in \{0, 1\}$: Time one and two binary treatment
 - X_{i1}, X_{i2}: covariates with X_{i2} affected by T_{i1} but not T_{i2}
 - Y_i: Outcome, observed after time two

- The framework and notation generalize to J time periods:
 - Treatment history: $\overline{T}_{ij} = \{T_{i1}, \ldots, T_{ij}\}$
 - Covariate history: $\overline{X}_{ij} = \{X_{i1}, \ldots, X_{ij}\}$

- **Assumptions:**
 1. Sequential ignorability:
 \[
 Y_i(\overline{t}_J) \perp T_{ij} \mid \overline{T}_{i,j-1} = \overline{t}_{j-1}, \overline{X}_{ij} = \overline{x}_j
 \]
 where $\overline{t}_J = \{\overline{t}_{j-1}, t_j, \ldots, t_J\}$
 2. Common support:
 \[
 0 < \Pr(T_{ij} = 1 \mid \overline{T}_{i,j-1}, \overline{X}_{ij}) < 1
 \]
Inverse Probability Weights for MSMs

- Inverse probability weights:
 \[w_i = \frac{1}{P(T_{i1}, T_{i2} \mid X_{i1}, X_{i2})} \quad \text{and} \quad sw_i = \frac{P(T_{i1}, T_{i2})}{P(T_{i1}, T_{i2} \mid X_{i1}, X_{i2})} \]

- In the general \(J \) period case:
 \[w_i = \frac{1}{\prod_{j=1}^{J} P(T_{ij} \mid T_{i,j-1}, X_{ij})} \quad \text{and} \quad sw_i = \frac{\prod_{j=1}^{J} P(T_{ij} \mid T_{i,j-1})}{\prod_{j=1}^{J} P(T_{ij} \mid T_{i,j-1}, X_{ij})} \]

- Typically, propensity scores are estimated by a parametric model
- MSM weights = product of estimated propensity scores
 \[\implies \text{sensitivity to model misspecification} \]
- CBPS: estimate MSM weights so that covariate balance is optimized
Balancing Conditions in the Two Period Case

- time 1 covariates X_{i1}: 3 equality constraints
 \[\mathbb{E}(X_{i1}) = \mathbb{E}[1 \{ T_{i1} = t_1, T_{i2} = t_2 \} w_i \, X_{i1}] \]

- time 2 covariates X_{i2}: 2 equality constraints
 \[\mathbb{E}(X_{i2}(t_1)) = \mathbb{E}[1 \{ T_{i1} = t_1, T_{i2} = t_2 \} w_i \, X_{i2}(t_1)] \]
 for $t_2 = 0, 1$
Orthogonalization of Covariate Balancing Conditions

<table>
<thead>
<tr>
<th>Time period</th>
<th>Treatment history: ((t_1, t_2))</th>
<th>Moment condition</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>((0,0)) ((0,1)) ((1,0)) ((1,1))</td>
<td>(\mathbb{E} {(-1)^{T_{i1}} w_i X_{i1}} = 0)</td>
</tr>
<tr>
<td>time 1</td>
<td>+ + − − + −</td>
<td>(\mathbb{E} {(-1)^{T_{i2}} w_i X_{i1}} = 0)</td>
</tr>
<tr>
<td></td>
<td>+ + − + + −</td>
<td>(\mathbb{E} {(-1)^{T_{i1}+T_{i2}} w_i X_{i1}} = 0)</td>
</tr>
<tr>
<td>time 2</td>
<td>+ + − + + −</td>
<td>(\mathbb{E} {(-1)^{T_{i2}} w_i X_{i2}} = 0)</td>
</tr>
<tr>
<td></td>
<td>+ + − − + +</td>
<td>(\mathbb{E} {(-1)^{T_{i1}+T_{i2}} w_i X_{i2}} = 0)</td>
</tr>
</tbody>
</table>
GMM Estimator (Two Period Case)

- Independence across balancing conditions:

\[
\hat{\beta} = \arg\min_{\beta \in \Theta} \text{vec}(G) \top \{I_3 \otimes W\}^{-1} \text{vec}(G) \\
= \arg\min_{\beta \in \Theta} \text{trace}(G \top W^{-1} G)
\]

- Sample moment conditions:

\[
G = \frac{1}{n} \sum_{i=1}^{n} \begin{bmatrix}
(-1)^{T_{i1}} w_i X_{i1} & (-1)^{T_{i2}} w_i X_{i1} & (-1)^{T_{i1}+T_{i2}} w_i X_{i1} \\
0 & (-1)^{T_{i2}} w_i X_{i2} & (-1)^{T_{i1}+T_{i2}} w_i X_{i2}
\end{bmatrix}
\]

- Covariance matrix:

\[
W = \frac{1}{n} \sum_{i=1}^{n} \begin{bmatrix}
\mathbb{E}(w_i^2 X_{i1} X_{i1} \top | X_{i1}, X_{i2}) & \mathbb{E}(w_i^2 X_{i1} X_{i2} \top | X_{i1}, X_{i2}) \\
\mathbb{E}(w_i^2 X_{i2} X_{i1} \top | X_{i1}, X_{i2}) & \mathbb{E}(w_i^2 X_{i2} X_{i2} \top | X_{i1}, X_{i2})
\end{bmatrix}
\]
Extending Beyond Two Period Case

\[X_{i1} \]

\[T_{i1} = 1 \]

\[X_{i2}(1) \]

\[T_{i2} = 1 \]

\[X_{i3}(1,1) \]

\[T_{i3} = 1 \]

\[Y_{i}(1,1,1) \]

\[T_{i3} = 0 \]

\[Y_{i}(1,1,0) \]

\[T_{i2} = 0 \]

\[X_{i3}(1,0) \]

\[T_{i3} = 1 \]

\[Y_{i}(1,0,1) \]

\[T_{i3} = 0 \]

\[Y_{i}(1,0,0) \]

\[T_{i1} = 0 \]

\[X_{i2}(0) \]

\[T_{i2} = 1 \]

\[X_{i3}(0,1) \]

\[T_{i3} = 1 \]

\[Y_{i}(0,1,1) \]

\[T_{i3} = 0 \]

\[Y_{i}(0,1,0) \]

\[T_{i2} = 0 \]

\[X_{i3}(0,0) \]

\[T_{i3} = 1 \]

\[Y_{i}(0,0,1) \]

\[T_{i3} = 0 \]

\[Y_{i}(0,0,0) \]
Orthogonalized Covariate Balancing Conditions

<table>
<thead>
<tr>
<th>Design matrix</th>
<th>Treatment History Hadamard Matrix: ((t_1, t_2, t_3))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T_{i1})</td>
<td>(h_0)</td>
</tr>
<tr>
<td>(-)</td>
<td>(+)</td>
</tr>
<tr>
<td>(+)</td>
<td>(+)</td>
</tr>
<tr>
<td>(-)</td>
<td>(+)</td>
</tr>
<tr>
<td>(+)</td>
<td>(+)</td>
</tr>
<tr>
<td>(-)</td>
<td>(+)</td>
</tr>
<tr>
<td>(+)</td>
<td>(+)</td>
</tr>
<tr>
<td>(+)</td>
<td>(+)</td>
</tr>
<tr>
<td>(-)</td>
<td>(+)</td>
</tr>
<tr>
<td>(-)</td>
<td>(+)</td>
</tr>
</tbody>
</table>

- The mod 2 discrete Fourier transform:
 \[
 \mathbb{E}\{(-1)^{T_{i1}+T_{i3}} w_i X_{ij}\} = 0 \quad \text{(6th row)}
 \]

- Connection to the fractional factorial design
 - “Fractional” = past treatment history
 - “Factorial” = future potential treatments
A Simulation Study with Correct Lag Structure

- 3 time periods
- Treatment assignment process (logistic model):

$$T_i = T_{i1} \rightarrow T_{i2} \rightarrow T_{i3}$$

- Outcome: $$Y_i = 250 - 10 \cdot \sum_{j=1}^{3} T_{ij} + \sum_{j=1}^{3} \delta^\top X_{ij} + \epsilon_i$$
- Functional form misspecification by nonlinear transformation of $$X_{ij}$$
• β_j: regression coefficient for T_{ij} from marginal structural model
• Last column: mean bias for $\mathbb{E}\{Y_i(t_1,t_2,t_3)\}$

Bias

$\hat{\beta}_1$

$\hat{\beta}_2$

$\hat{\beta}_3$

Mean Over Subgroups

Correct Covariates

Transformed Covariates

Sample Size

Imai & Ratkovic (Princeton) Covariate Balancing Propensity Score May 21, 2013
Root Mean Square Error

\[\widehat{\beta}_1 \]

\[\widehat{\beta}_2 \]

\[\widehat{\beta}_3 \]

Mean Over Subgroups

Correct Covariates

Transformed Covariates

Sample Size

RMSE

CBPS1 (Balance alone)

CBPS2 (Score + Balance)

GLM

True weights

Imai & Ratkovic (Princeton) Covariate Balancing Propensity Score May 21, 2013 13 / 17
A Simulation Study with Incorrect Lag Structure

- 3 time periods
- Treatment assignment process (logistic model):

The same outcome model
- Incorrect lag: only adjusts for previous lag but not all lags
- In addition, the same functional form misspecification of X_{ij}
\(\beta_j \): regression coefficient for \(T_{ij} \) from marginal structural model

- Last column: mean bias for \(\mathbb{E}\{ Y_i(t_1, t_2, t_3) \} \)
Root Mean Square Error

\[\hat{\beta}_1 \]

\[\hat{\beta}_2 \]

\[\hat{\beta}_3 \]

Mean Over Subgroups

Correct Covariates

Transformed Covariates

Sample Size

RMSE

- CBPS1 (Balance alone)
- CBPS2 (Score + Balance)
- GLM
- True weights

Imai & Ratkovic (Princeton) Covariate Balancing Propensity Score May 21, 2013
Concluding Remarks

- **Covariate Balancing Propensity Score (CBPS):**
 1. optimizes covariate balance when estimating propensity score
 2. is more robust to model misspecification than a standard method
 3. improves inverse probability weighting methods including MSMs

- **Ongoing work:**
 1. Generalized propensity score estimation
 2. Generalizing experimental and instrumental variable estimates
 3. Confounder selection, moment selection

- **Open-source software,** CBPS: R Package for Covariate Balancing Propensity Score, **is available at CRAN**
GMM in the General Case

- The same setup as before:
 \[\hat{\beta} = \arg\min_{\beta \in \Theta} \text{trace}(G^\top W^{-1}G) \]

where

\[
G = \begin{bmatrix}
\tilde{X}_1^\top MR_1 \\
\vdots \\
\tilde{X}_J^\top MR_J
\end{bmatrix}
\quad \text{and} \quad
W = \begin{bmatrix}
\mathbb{E}(\tilde{X}_1 \tilde{X}_1^\top | X) & \cdots & \mathbb{E}(\tilde{X}_1 \tilde{X}_J^\top | X) \\
\vdots & \ddots & \vdots \\
\mathbb{E}(\tilde{X}_J \tilde{X}_1^\top | X) & \cdots & \mathbb{E}(\tilde{X}_J \tilde{X}_J^\top | X)
\end{bmatrix}
\]

- M is an \(n \times (2^J - 1) \) “model matrix” based on the design matrix

- For each time period \(j \), define \(\tilde{X}_j \) and “selection matrix” \(R_j \)

\[
\tilde{X}_j = \begin{bmatrix}
w_1 X_{1j}^\top \\
w_2 X_{2j}^\top \\
\vdots \\
w_n X_{nj}^\top
\end{bmatrix}
\quad \text{and} \quad
R_j = \begin{bmatrix}
0_{2^{j-1} \times 2^{j-1}} \\
0_{(2^J - 2^{j-1}) \times 2^{j-1}} & 0_{2^{j-1} \times (2^J - 2^{j-1})} \\
I_{2^{J-2^{j-1}}}
\end{bmatrix}
\]