Survey Methodologies for Sensitive Questions

Kosuke Imai
Princeton University

January 30, 2015
International Methods Colloquium
Rice University

Joint work with
Graeme Blair, Jason Lyall, Bryn Rosenfeld, Jacob Shapiro
Introduction

- Challenge of measuring sensitive attitudes and behaviors
 - social desirability bias
 - non-response bias

- Indirect methods becoming increasingly popular
 - list experiments
 - endorsement experiment
 - randomized response

- Development of statistical methods
 - multivariate regression for each survey technique (Bullock, Imai and Shapiro 2010; Imai 2011; Blair & Imai 2012; Blair, Imai & Zhou 2014)
 - using responses as predictors in outcome regression (Imai, Park & Greene In-press)

- Empirical validation studies
 - validation against ground truth (Rosenfeld, Imai & Shapiro In-press)
 - comparison of multiple measurements (Blair, Imai & Lyall 2014)
 - prediction of behavior (Hirose, Imai & Lyall 2014)
Estimate voting on anti-abortion referendum using:
- direct question
- list experiment (item/unmatched count technique)
- endorsement experiment
- randomized response

Validate estimates against official election outcome:
- sample from voter history file
- county-level voting recap reports for validation

Case selection:
- a poll conducted 24 hours before the election predicts 44% no votes
- the amendment was defeated 58% to 42%

Findings:
- direct question \(\sim\) significant under-estimation though efficient
- indirect methods \(\sim\) much less biased though more variable
- endorsement and randomized response \(\sim\) least bias
Did you vote YES or NO on the Personhood Initiative, which appeared on the November 2011 Mississippi General Election ballot?

Voted Yes
Voted No
Did not vote
Don’t know
Refused
Here is a list of four things that some people have done and some people have not. Please listen to them and then tell me HOW MANY of them you have done in the past two years. Do not tell me which you have and have not done. Just tell me how many:

- Discussed politics with family or friends
- Cast a ballot for Governor Phil Bryant
- Paid dues to a union
- Given money to a Tea Party candidate or organization (treatment) Voted ‘YES’ on the ‘Personhood’ Initiative

How many of these things have you done in the past two years?
Endorsement Experiment

We’d like to get your overall opinion of some people in the news. As I read each name, please say if you have a very favorable, somewhat favorable, somewhat unfavorable, or very unfavorable opinion of each person.

(control) Phil Bryant, Governor of Mississippi?

(treatment) Phil Bryant, Governor of Mississippi, who campaigned in favor of the ‘Personhood’ Initiative on the 2011 Mississippi General Election ballot?
Randomized Response

To answer this question, you will need a coin. Once you have found one, please toss the coin two times and note the results of those tosses (heads or tails) one after the other on a sheet of paper. Do not reveal to me whether your coin lands on heads or tails. After you have recorded the results of your two coin tosses, just tell me you are ready and we will begin.

Now, please answer ‘yes’ if either your second coin toss came up heads or you voted ‘YES’ on the Personhood Initiative, which appeared on the November 2011 Mississippi General Election ballot.

Yes
No
Don’t know
Refused
Method for List Experiment (Imai 2011; Blair & Imai 2012)

▶ Setup:
 ▶ Y_i: observed response
 ▶ X_i: observed covariates
 ▶ Z_i^*: latent response to the sensitive item
 ▶ Y_i^*: latent response to the control items
 ▶ T_i: treatment such that $Y_i = Y_i^* + T_iZ_i^*$

▶ Assumptions: (1) no design effect, (2) no liar

▶ A total of $(2 \times (J + 1))$ “types” (Y_i^*, Z_i^*)

▶ Example: three control items ($J = 3$)

<table>
<thead>
<tr>
<th>Y_i</th>
<th>Treatment group</th>
<th>Control group</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>(3,1)</td>
<td>(3,1)</td>
</tr>
<tr>
<td>3</td>
<td>(2,1) (3,0)</td>
<td>(3,1) (3,0)</td>
</tr>
<tr>
<td>2</td>
<td>(1,1) (2,0)</td>
<td>(2,1) (2,0)</td>
</tr>
<tr>
<td>1</td>
<td>(0,1) (1,0)</td>
<td>(1,1) (1,0)</td>
</tr>
<tr>
<td>0</td>
<td>(0,0)</td>
<td>(0,1)</td>
</tr>
</tbody>
</table>

Kosuke Imai (Princeton)
Method for List Experiment (Imai 2011; Blair & Imai 2012)

- **Setup:**
 - Y_i: observed response
 - X_i: observed covariates
 - Z_i^*: latent response to the sensitive item
 - Y_i^*: latent response to the control items
 - T_i: treatment such that $Y_i = Y_i^* + T_i Z_i^*$

- **Assumptions:** (1) no design effect, (2) no liar

- A total of $(2 \times (J + 1))$ “types” (Y_i^*, Z_i^*)

- **Example:** three control items ($J = 3$)

<table>
<thead>
<tr>
<th>Y_i</th>
<th>Treatment group</th>
<th>Control group</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>(3,1)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>(2,1) (3,0)</td>
<td>(3,1) (3,0)</td>
</tr>
<tr>
<td>2</td>
<td>(1,1) (2,0)</td>
<td>(2,1) (2,0)</td>
</tr>
<tr>
<td>1</td>
<td>(0,1) (1,0)</td>
<td>(1,1) (1,0)</td>
</tr>
<tr>
<td>0</td>
<td>(0,0)</td>
<td>(0,1) (0,0)</td>
</tr>
</tbody>
</table>

Kosuke Imai (Princeton)

Sensitive Questions

January 30, 2015 (IMC)
Statistical Model for List Experiment

▶ Submodel for the response to the sensitive item Z_i^*:

$$\Pr(Z_i^* = 1 | X_i) = \text{logit}^{-1}(\alpha + \beta^\top X_i)$$

▶ Submodel for the responses to the control items Y_i^*:

$$\Pr(Y_i^* = y | X_i, Z_i^*) = \text{Binomial}(J, \text{logit}^{-1}(\gamma + \delta^\top X_i + \zeta Z_i^*))$$

▶ Combine them under the likelihood framework
Model for Endorsement Experiment (Bullock, Imai & Shapiro 2011)

Setup:
- T_i: treatment
- Y_i: observed (ordinal) response
- Y_i^*: latent (continuous) response
- X_i: observed covariates
- V_i^*: latent ideological position
- Z_i^*: latent additional support inducted by the endorsement

Latent measurement model:

$Y_i^* \sim \mathcal{N}(\beta(V_i^* + T_iZ_i^*) - \alpha, 1)$

with appropriate cut-points

Hierarchical model V_i^* and Z_i^*:

$V_i^* \sim \mathcal{N}(\delta^\top X_i, 1)$

$Z_i^* \sim \mathcal{N}(\lambda^\top X_i, \omega^2)$

Probability of positive support: $\Pr(Z_i^* > 0 \mid X_i)$
Model for Randomized Response (Blair, Imai & Zhou 2014)

Setup:
- Y_i: observed response
- Z_i^*: latent response to the sensitive item
- X_i: covariates

The model is,
$$\Pr(Z_i^* = 1 \mid X_i) = \logit^{-1}(\alpha + \beta^T X_i)$$

The likelihood function is given by,
$$\prod_{i=1}^{n} \left\{ \frac{1}{2} \cdot \logit^{-1}(\alpha + \beta^T X_i) + \frac{1}{2} \right\}^{Y_i} \left\{ 1 - \frac{1}{2} \cdot \logit^{-1}(\alpha + \beta^T X_i) - \frac{1}{2} \right\}^{1-Y_i}$$

Many other designs and accompanying methods are available
Bias of the Direct Question

![Graph showing the proportion of 'no' votes on Personhood for different counties. The graph compares Actual vote and Direct question, with error bars indicating variation.](image)

Kosuke Imai (Princeton) Sensitive Questions January 30, 2015 (IMC)
Pooled Analysis

Estimated proportion of 'no' votes on Personhood

- Direct Question (n = 2,655)
- List Experiment (n = 1,352)
- Endorsement Experiment (n = 1,841)
- Randomized Response (n = 943)

actual vote share

Unweighted
Weighted
Regression Adjusted
How do we measure civilian attitudes in a conflict setting?

Current efforts in Afghanistan rely on direct questions:

1. USAID (TCAPF): “Who do you believe can solve your problems?”
2. ISAF (ANQAR): “Over the past 6 months, do you think the Taliban have grown stronger, grown weaker, or remained the same?”

Why are direct questions a bad idea?

1. Threats to enumerators and respondents
2. Nonresponse, social desirability bias
3. Interviews are public
4. Danger of selection bias in sampling locations (role of gatekeepers)

ANQAR (November-December 2011): 50% refusal rate
Public Nature of Interviews

Kosuke Imai (Princeton)
Surveying in the Heartland of Insurgency

[Map of Afghanistan with various regions marked and a legend explaining the symbols used, such as sampled village, violent event, Taliban controlled district, contested district, and government controlled district.]
Script for the control group:

A recent proposal calls for the sweeping reform of the Afghan prison system, including the construction of new prisons in every district to help alleviate overcrowding in existing facilities. Though expensive, new programs for inmates would also be offered, and new judges and prosecutors would be trained. How do you feel about this proposal?

Strongly agree; Agree; Indifferent; Disagree; Strongly disagree; Don’t Know; Refuse to answer
Endorsement Experiments

▶ Script for the treatment group:

A recent proposal by ISAF calls for the sweeping reform of the Afghan prison system, including the construction of new prisons in every district to help alleviate overcrowding in existing facilities. Though expensive, new programs for inmates would also be offered, and new judges and prosecutors would be trained. How do you feel about this proposal?

Strongly agree; Agree; Indifferent; Disagree; Strongly disagree; Don’t Know; Refuse to answer
Script for the control group:

I’m going to read you a list with the names of different groups and individuals on it. After I read the entire list, I’d like you to tell me how many of these groups and individuals you broadly support, meaning that you generally agree with the goals and policies of the group or individual. Please don’t tell me which ones you generally agree with; only tell me how many groups or individuals you broadly support.

Karzai Government; National Solidarity Program; Local Farmers
List Experiments

Script for the treatment group:

I’m going to read you a list with the names of different groups and individuals on it. After I read the entire list, I’d like you to tell me how many of these groups and individuals you broadly support, meaning that you generally agree with the goals and policies of the group or individual. Please don’t tell me which ones you generally agree with; only tell me how many groups or individuals you broadly support.

Karzai Government; National Solidarity Program; Local Farmers; ISAF
Need for validation \Rightarrow Multiple measurement strategy

Two measures should give similar results

What is the probability of supporting ISAF?
1. List: prob. of saying yes to the sensitive item
2. Endorsement: prob. of endorsement having a positive effect on support for policy

These probabilities should be similar!

They can be estimated with a new multivariate regression method

Endorsement and list experiments can even be combined for a joint analysis
Statistical Analysis of Endorsement Experiments

- **Item response theory** to combine questions:

 \[\Pr(Y_{ij} = 1 \mid T_i = k) = \Phi(\alpha_j + \beta_j(x_i + s_{ijk})) \]

 - \(\alpha_j\): average popularity of policy \(j\)
 - \(\beta_j\): how much policy \(j\) differentiates pro- and anti-reform respondents
 - \(x_i\): “ideal point” = how pro-reform respondent \(i\) is
 - \(s_{ijk}\): support level for combatant \(k\) in policy \(j\)

- **Multi-stage sampling** \(\leadsto\) **Multi-level modeling**

 \[s_{ijk} \sim \mathcal{N}(\lambda_{k,village[i]} + Z_i^T \lambda_k^Z, \omega_{k,village}^2) \]
 \[\lambda_{k,village[i]} \sim \mathcal{N}(\lambda_{k,district[i]} + V_{village[i]}^T \lambda_k^V, \omega_{k,district}^2) \]
 \[\lambda_{k,district[i]} \sim \mathcal{N}(\lambda_{k,province[i]} + W_{district[i]}^T \lambda_k^W, \omega_{k,province}^2) \]

 - Same multi-level structure for ideal points \(x_i\)
Descriptive Comparison: Overall

Control Group

\[\rho = 0.16 \]
\[\tau = 0.10 \]

Endorsement Experiment

ISAF Treatment Group

\[\rho = 0.52 \]
\[\tau = 0.43 \]

Endorsement Experiment
Descriptive Comparison: Question by Question

List Experiment

<table>
<thead>
<tr>
<th>Topic</th>
<th>Treatment Group</th>
<th>Control Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct Elections (p < .01)</td>
<td>$\rho = 0.44$</td>
<td>$\rho = 0.18$</td>
</tr>
<tr>
<td></td>
<td>$\tau = 0.37$</td>
<td>$\tau = 0.14$</td>
</tr>
</tbody>
</table>

Endorsement Experiment

<table>
<thead>
<tr>
<th>Topic</th>
<th>Treatment Group</th>
<th>Control Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prison Reform (p = 0.26)</td>
<td>$\rho = 0.12$</td>
<td>$\rho = 0.09$</td>
</tr>
<tr>
<td></td>
<td>$\tau = 0.10$</td>
<td>$\tau = 0.08$</td>
</tr>
</tbody>
</table>

Endorsement Experiment

<table>
<thead>
<tr>
<th>Topic</th>
<th>Treatment Group</th>
<th>Control Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Election Commission (p < .01)</td>
<td>$\rho = 0.44$</td>
<td>$\rho = 0.10$</td>
</tr>
<tr>
<td></td>
<td>$\tau = 0.38$</td>
<td>$\tau = 0.07$</td>
</tr>
</tbody>
</table>

Endorsement Experiment

<table>
<thead>
<tr>
<th>Topic</th>
<th>Treatment Group</th>
<th>Control Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corruption Reform (p < .01)</td>
<td>$\rho = 0.50$</td>
<td>$\rho = 0.04$</td>
</tr>
<tr>
<td></td>
<td>$\tau = 0.42$</td>
<td>$\tau = 0.03$</td>
</tr>
</tbody>
</table>

Kosuke Imai (Princeton)

Sensitive Questions

January 30, 2015 (IMC)
Overall Proportion of ISAF Supporters

List Endorsement Difference (List − Endorse) Combined

Overall Proportion of ISAF Supporters

Kosuke Imai (Princeton) Sensitive Questions January 30, 2015 (IMC) 28 / 30
Concluding Remarks

- Direct question is severely biased

- All indirect methods reduce bias:
 - Endorsement and randomized response \rightsquigarrow least bias
 - List experiment \rightsquigarrow ceiling/floor effects, design effects
 - Ease of implementation: list $>$ endorse $>$ randomized response

- Use of multiple-measurement strategies when truth is not available

- Future research directions:
 - How to balance bias, precision, and cost
 - Use aggregate-level truth to improve individual-level estimates

- Open-source software:
 - list for list experiment (Blair, Imai & Park)
 - endorse for endorsement experiment (Shiraito & Imai)
 - rr for randomized response (Blair, Imai & Zhou)
► Development of new methods:
 ► “Statistical Analysis of Endorsement Experiments: Measuring Support for Militant Groups in Pakistan.” *Political Analysis*
 ► “Multivariate Regression Analysis for the Item Count Technique.” *Journal of the American Statistical Association*
 ► “Statistical Analysis of List Experiments.” *Political Analysis*
 ► “Using the Predicted Responses from List Experiments as Explanatory Variables in Regression Models.” *Political Analysis*
 ► “Design and Analysis of the Randomized Response Technique.”

► Empirical applications and validations:
 ► “Explaining Support for Combatants during Wartime: A Survey Experiment in Afghanistan.” *American Political Science Review*
 ► “Can Civilian Attitudes Predict Civil War Violence?”