Robust Estimation of Inverse Probability Weights for Marginal Structural Models

Kosuke Imai
Princeton University
2013 Joint Statistical Meetings, Montreal
August 5, 2013
Joint work with Marc Ratkovic
Motivation

- Central role of propensity score in causal inference
 - Adjusting for observed confounding in observational studies
 - Generalizing experimental and instrumental variables estimates

- Causal inference in longitudinal data
 - Marginal Structural Models (MSMs)
 - Inverse probability weighting for dynamic treatment regimes
 - Sensitivity to propensity score model misspecification
 - Difficulty of balance checking

- Covariate Balancing Propensity Score (CBPS)
 - Estimate propensity score by optimizing covariate balance
 - Generalize the cross-section case to the longitudinal setting
 - Balances within each observed treatment sequence
 - Balances across all potential future treatment sequences
CBPS in the Cross-Section Case (JRSSB, in-press)

- **Setup:**
 - $T_i \in \{0, 1\}$: binary treatment
 - X_i: observed pre-treatment covariates
 - $\Pr(T_i = 1 \mid X_i)$: Propensity score

- **Covariate balancing conditions:**

\[
\mathbb{E} \left\{ \frac{\mathbb{1}\{T_i = 0\} X_i}{\Pr(T_i = 0 \mid X_i)} \right\} = \mathbb{E} \left\{ \frac{\mathbb{1}\{T_i = 1\} X_i}{\Pr(T_i = 1 \mid X_i)} \right\}
\]

- This can be rewritten as:

\[
\mathbb{E} \left\{ (-1)^{T_i} w_i X_i \right\} = 0 \quad \text{where} \quad w_i = \frac{1}{\Pr(T_i \mid X_i)}
\]

- Generalized method of moments (GMM) or empirical likelihood
Marginal Structural Models (MSMs): A Review

Setup:
- \(T_{i1}, T_{i2} \in \{0, 1\} \): Time one and two binary treatment
- \(X_{i1}, X_{i2} \): covariates with \(X_{i2} \) affected by \(T_{i1} \) but not \(T_{i2} \)
- \(Y_i \): Outcome, observed after time two

The framework and notation generalize to \(J \) time periods:
- Treatment history: \(\bar{T}_{ij} = \{T_{i1}, \ldots, T_{ij}\} \)
- Covariate history: \(\bar{X}_{ij} = \{X_{i1}, \ldots, X_{ij}\} \)

Assumptions:
1. Sequential ignorability:
 \[
 Y_i(\bar{t}_J) \perp T_{ij} \mid \bar{T}_{i,j-1} = \bar{t}_{j-1}, \bar{X}_{ij} = \bar{x}_j
 \]
 where \(\bar{t}_J = \{\bar{t}_{j-1}, t_j, \ldots, t_J\} \)
2. Common support:
 \[
 0 < \Pr(T_{ij} = 1 \mid \bar{T}_{i,j-1}, \bar{X}_{ij}) < 1
 \]
Inverse Probability Weights for MSMs

- Inverse probability weights:

\[w_i = \frac{1}{P(T_{i1}, T_{i2} \mid X_{i1}, X_{i2})} \quad \text{and} \quad sw_i = \frac{P(T_{i1}, T_{i2})}{P(T_{i1}, T_{i2} \mid X_{i1}, X_{i2})} \]

- In the general J period case:

\[w_i = \frac{1}{\prod_{j=1}^{J} P(T_{ij} \mid T_{i,j-1}, X_{ij})} \quad \text{and} \quad sw_i = \frac{\prod_{j=1}^{J} P(T_{ij} \mid T_{i,j-1})}{\prod_{j=1}^{J} P(T_{ij} \mid T_{i,j-1}, X_{ij})} \]

- Typically, propensity scores are estimated by a parametric model
- MSM weights = product of estimated propensity scores
 \[\Rightarrow \text{sensitivity} \text{ to model misspecification} \]
- CBPS: estimate MSM weights so that covariate balance is optimized
Balancing Conditions in the Two Period Case

- time 1 covariates X_{i1}: 3 equality constraints
 \[
 \mathbb{E}(X_{i1}) = \mathbb{E}[\mathbb{1}\{T_{i1} = t_1, T_{i2} = t_2\} w_i X_{i1}]
 \]

- time 2 covariates X_{i2}: 2 equality constraints
 \[
 \mathbb{E}(X_{i2}(t_1)) = \mathbb{E}[\mathbb{1}\{T_{i1} = t_1, T_{i2} = t_2\} w_i X_{i2}(t_1)]
 \]
 for $t_2 = 0, 1$
Orthogonalization of Covariate Balancing Conditions

<table>
<thead>
<tr>
<th>Time period</th>
<th>(0,0)</th>
<th>(0,1)</th>
<th>(1,0)</th>
<th>(1,1)</th>
<th>Moment condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>time 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>$\mathbb{E} \left{ (-1)^{T_{i1}} w_i X_{i1} \right} = 0$</td>
</tr>
<tr>
<td></td>
<td>+</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>$\mathbb{E} \left{ (-1)^{T_{i2}} w_i X_{i1} \right} = 0$</td>
</tr>
<tr>
<td></td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>$\mathbb{E} \left{ (-1)^{T_{i1} + T_{i2}} w_i X_{i1} \right} = 0$</td>
</tr>
<tr>
<td>time 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>+</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>$\mathbb{E} \left{ (-1)^{T_{i2}} w_i X_{i2} \right} = 0$</td>
</tr>
<tr>
<td></td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>$\mathbb{E} \left{ (-1)^{T_{i1} + T_{i2}} w_i X_{i2} \right} = 0$</td>
</tr>
</tbody>
</table>
GMM Estimator (Two Period Case)

- Independence across balancing conditions:

\[\hat{\beta} = \underset{\beta \in \Theta}{\text{argmin}} \ \text{vec}(G)^\top \{I_3 \otimes W\}^{-1} \text{vec}(G) \]

\[= \underset{\beta \in \Theta}{\text{argmin}} \ \text{trace}(G^\top W^{-1} G) \]

- Sample moment conditions:

\[G = \frac{1}{n} \sum_{i=1}^{n} \begin{bmatrix} (-1)^{T_{i1}} w_i X_{i1} & (-1)^{T_{i2}} w_i X_{i1} & (-1)^{T_{i1}+T_{i2}} w_i X_{i1} \\ 0 & (-1)^{T_{i2}} w_i X_{i2} & (-1)^{T_{i1}+T_{i2}} w_i X_{i2} \end{bmatrix} \]

- Covariance matrix:

\[W = \frac{1}{n} \sum_{i=1}^{n} \begin{bmatrix} \mathbb{E}(w_i^2 X_{i1} X_{i1}^\top | X_{i1}, X_{i2}) & \mathbb{E}(w_i^2 X_{i1} X_{i2}^\top | X_{i1}, X_{i2}) \\ \mathbb{E}(w_i^2 X_{i1} X_{i2}^\top | X_{i1}, X_{i2}) & \mathbb{E}(w_i^2 X_{i2} X_{i2}^\top | X_{i1}, X_{i2}) \end{bmatrix} \]
Extending Beyond Two Period Case

\[
\begin{align*}
X_{i1} & \quad T_{i1} = 1 \quad X_{i2}(1) \\
& \quad T_{i1} = 0 \quad X_{i2}(0)
\end{align*}
\]

\[
\begin{align*}
T_{i2} = 1 & \quad X_{i3}(1, 1) & \quad T_{i3} = 1 & \quad Y_i(1, 1, 1) \\
& \quad Y_i(1, 1, 0) \\
T_{i2} = 0 & \quad X_{i3}(1, 0) & \quad T_{i3} = 1 & \quad Y_i(1, 0, 1) \\
& \quad Y_i(1, 0, 0) \\
T_{i2} = 1 & \quad X_{i3}(0, 1) & \quad T_{i3} = 1 & \quad Y_i(0, 1, 1) \\
& \quad Y_i(0, 1, 0) \\
T_{i2} = 0 & \quad X_{i3}(0, 0) & \quad T_{i3} = 1 & \quad Y_i(0, 0, 1) \\
& \quad Y_i(0, 0, 0)
\end{align*}
\]
Orthogonalized Covariate Balancing Conditions

<table>
<thead>
<tr>
<th>Design matrix</th>
<th>Treatment History Hadamard Matrix: ((t_1, t_2, t_3))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T_{i1})</td>
<td>(h_0)</td>
</tr>
<tr>
<td>(-)</td>
<td>(-)</td>
</tr>
<tr>
<td>(+)</td>
<td>(-)</td>
</tr>
<tr>
<td>(-)</td>
<td>(+)</td>
</tr>
<tr>
<td>(+)</td>
<td>(+)</td>
</tr>
<tr>
<td>(\cdot)</td>
<td>(\cdot)</td>
</tr>
<tr>
<td>(+)</td>
<td>(+)</td>
</tr>
<tr>
<td>(\cdot)</td>
<td>(\cdot)</td>
</tr>
<tr>
<td>(+)</td>
<td>(+)</td>
</tr>
</tbody>
</table>

- The mod 2 discrete Fourier transform:
 \[\mathbb{E}\{(-1)^{T_{i1} + T_{i3}} w_i X_{ij}\} = 0 \] (6th row)

- Connection to the fractional factorial design
 - “Fractional” = past treatment history
 - “Factorial” = future potential treatments
A Simulation Study with Correct Lag Structure

- 3 time periods
- Treatment assignment process (logistic model):

\[T_i = T_{i1} T_{i2} T_{i3} \]

\[X_{i1} \]
\[X_{i2} \]
\[X_{i3} \]

- Outcome: \(Y_i = 250 - 10 \cdot \sum_{j=1}^{3} T_{ij} + \sum_{j=1}^{3} \delta^T X_{ij} + \epsilon_i \)
- Functional form misspecification by nonlinear transformation of \(X_{ij} \)

- β_j: regression coefficient for T_{ij} from marginal structural model
- Last column: mean bias for $\mathbb{E}\{Y_i(t_1, t_2, t_3)\}$

Bias

Correct Covariates

- CBPS1 (Balance alone)
- CBPS2 (Score + Balance)
- GLM
- True weights

Transformed Covariates

Sample Size

Mean Over Subgroups
Root Mean Square Error

\[\hat{\beta}_1 \]

\[\hat{\beta}_2 \]

\[\hat{\beta}_3 \]

Mean Over Subgroups

Correct Covariates

Transformed Covariates

Sample Size

RMSE

CBPS1 (Balance alone)

CBPS2 (Score + Balance)

GLM

True weights

Imai & Ratkovic (Princeton)
A Simulation Study with Incorrect Lag Structure

- 3 time periods
- Treatment assignment process (logistic model):

- The same outcome model
- Incorrect lag: only adjusts for previous lag but not all lags
- In addition, the same functional form misspecification of X_{ij}
\(\beta_j \): regression coefficient for \(T_{ij} \) from marginal structural model

Last column: mean bias for \(\mathbb{E}\{Y_i(t_1, t_2, t_3)\} \)
Root Mean Square Error

![Graphs showing RMSE for different methods and covariate transformations.](image)

- **$\hat{\beta}_1$**
- **$\hat{\beta}_2$**
- **$\hat{\beta}_3$**

- **Correct Covariates**
- **Transformed Covariates**

Sample Size

- CBPS1 (Balance alone)
- CBPS2 (Score + Balance)
- GLM
- True weights

- Sample Size
- RMSE
- $\hat{\beta}_1$, $\hat{\beta}_2$, $\hat{\beta}_3$, Mean Over Subgroups

Imai & Ratkovic (Princeton) Covariate Balancing Propensity Score JSM (August 5, 2013) 16 / 17
Concluding Remarks

- **Covariate Balancing Propensity Score (CBPS):**
 1. optimizes covariate balance when estimating propensity score
 2. is more robust to model misspecification than a standard method
 3. improves inverse probability weighting methods including MSMs

- **Ongoing work:**
 1. Generalized propensity score estimation
 2. Generalizing experimental and instrumental variable estimates
 3. Confounder selection, moment selection

- **Open-source software,** **CBPS: R Package for Covariate Balancing Propensity Score**, is available at CRAN
GMM in the General Case

- The same setup as before:
 \[
 \hat{\beta} = \arg\min_{\beta \in \Theta} \text{trace}(G^T W^{-1} G)
 \]

where

\[
G = \begin{bmatrix}
 \tilde{X}_1^\top \text{MR}_1 \\
 \vdots \\
 \tilde{X}_J^\top \text{MR}_J
 \end{bmatrix}
\]

and

\[
W = \begin{bmatrix}
 \mathbb{E}(\tilde{X}_1\tilde{X}_1^\top | X) & \cdots & \mathbb{E}(\tilde{X}_1\tilde{X}_J^\top | X) \\
 \vdots & \ddots & \vdots \\
 \mathbb{E}(\tilde{X}_J\tilde{X}_1^\top | X) & \cdots & \mathbb{E}(\tilde{X}_J\tilde{X}_J^\top | X)
 \end{bmatrix}
\]

- **M** is an \(n \times (2^J - 1)\) “model matrix” based on the design matrix
- For each time period \(j\), define \(\tilde{X}_j\) and “selection matrix” \(R_j\)

\[
\tilde{X}_j = \begin{bmatrix}
 w_1 X_{1j}^\top \\
 w_2 X_{2j}^\top \\
 \vdots \\
 w_n X_{nj}^\top
 \end{bmatrix}
\]

and

\[
R_j = \begin{bmatrix}
 \mathbf{0}_{2^{j-1} \times 2^{j-1}} & \mathbf{0}_{2^{j-1} \times (2^J - 2^{j-1})} \\
 \mathbf{0}_{(2^J - 2^{j-1}) \times 2^{j-1}} & \mathbf{I}_{2^J - 2^{j-1}}
 \end{bmatrix}
\]