Survey Methodologies for Sensitive Questions

Kosuke Imai
Princeton University

July 16, 2015

Annual Summer Workshop on Quantitative Social Science
Keio University

Joint work with
Graeme Blair, Jason Lyall, Bryn Rosenfeld, Jacob Shapiro
Introduction

- Challenge of measuring sensitive attitudes and behaviors
 - social desirability bias
 - non-response bias

- Indirect methods becoming increasingly popular
 - list experiments
 - endorsement experiment
 - randomized response

- Development of statistical methods
 - multivariate regression for each survey technique (Bullock, Imai and Shapiro 2010; Imai 2011; Blair & Imai 2012; Blair, Imai & Zhou 2014)
 - using responses as predictors in outcome regression (Imai, Park & Greene In-press)

- Empirical validation studies
 - validation against ground truth (Rosenfeld, Imai & Shapiro In-press)
 - comparison of multiple measurements (Blair, Imai & Lyall 2014)
 - prediction of behavior (Hirose, Imai & Lyall 2014)
The Mississippi Validation Study (Rosenfeld, Imai & Shapiro In-press)

- Estimate voting on anti-abortion referendum using:
 - direct question
 - list experiment (item/unmatched count technique)
 - endorsement experiment
 - randomized response

- Validate estimates against official election outcome:
 - sample from voter history file
 - county-level voting recap reports for validation

- Case selection:
 - a poll conducted 24 hours before the election predicts 44% no votes
 - the amendment was defeated 58% to 42%

- Findings:
 - direct question \(\sim\) significant under-estimation though efficient
 - indirect methods \(\sim\) much less biased though more variable
 - endorsement and randomized response \(\sim\) least bias
Direct Question

Did you vote YES or NO on the Personhood Initiative, which appeared on the November 2011 Mississippi General Election ballot?

Voted Yes
Voted No
Did not vote
Don’t know
Refused
List Experiment

Here is a list of four things that some people have done and some people have not. Please listen to them and then tell me HOW MANY of them you have done in the past two years. Do not tell me which you have and have not done. Just tell me how many:

- Discussed politics with family or friends
- Cast a ballot for Governor Phil Bryant
- Paid dues to a union
- Given money to a Tea Party candidate or organization
- (treatment) Voted ‘YES’ on the ‘Personhood’ Initiative

How many of these things have you done in the past two years?
We’d like to get your overall opinion of some people in the news. As I read each name, please say if you have a very favorable, somewhat favorable, somewhat unfavorable, or very unfavorable opinion of each person.

(control) Phil Bryant, Governor of Mississippi?

(treatment) Phil Bryant, Governor of Mississippi, who campaigned in favor of the ‘Personhood’ Initiative on the 2011 Mississippi General Election ballot?
Randomized Response

To answer this question, you will need a coin. Once you have found one, please toss the coin two times and note the results of those tosses (heads or tails) one after the other on a sheet of paper. Do not reveal to me whether your coin lands on heads or tails. After you have recorded the results of your two coin tosses, just tell me you are ready and we will begin.

Now, please answer ‘yes’ if either your second coin toss came up heads or you voted ‘YES’ on the Personhood Initiative, which appeared on the November 2011 Mississippi General Election ballot.

Yes
No
Don’t know
Refused
Method for List Experiment (Imai 2011; Blair & Imai 2012)

- Setup:
 - Y_i: observed response
 - X_i: observed covariates
 - Z_i^*: latent response to the sensitive item
 - Y_i^*: latent response to the control items
 - T_i: treatment such that $Y_i = Y_i^* + T_i Z_i^*$

- Assumptions: (1) no design effect, (2) no liar

- A total of $(2 \times (J + 1))$ “types” (Y_i^*, Z_i^*)

- Example: three control items ($J = 3$)

<table>
<thead>
<tr>
<th>Y_i</th>
<th>Treatment group</th>
<th>Control group</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>(3,1)</td>
<td>(3,1)</td>
</tr>
<tr>
<td>3</td>
<td>(2,1) (3,0)</td>
<td>(3,1) (3,0)</td>
</tr>
<tr>
<td>2</td>
<td>(1,1) (2,0)</td>
<td>(2,1) (2,0)</td>
</tr>
<tr>
<td>1</td>
<td>(0,1) (1,0)</td>
<td>(1,1) (1,0)</td>
</tr>
<tr>
<td>0</td>
<td>(0,0)</td>
<td>(0,1) (0,0)</td>
</tr>
</tbody>
</table>
Method for List Experiment (Imai 2011; Blair & Imai 2012)

Setup:
- Y_i: observed response
- X_i: observed covariates
- Z_i^*: latent response to the sensitive item
- Y_i^*: latent response to the control items
- T_i: treatment such that $Y_i = Y_i^* + T_i Z_i^*$

Assumptions: (1) no design effect, (2) no liar

A total of $(2 \times (J + 1))$ “types” (Y_i^*, Z_i^*)

Example: three control items $(J = 3)$

<table>
<thead>
<tr>
<th>Y_i</th>
<th>Treatment group</th>
<th>Control group</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>(3,1)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>(2,1) (3,0)</td>
<td>(3,1) (3,0)</td>
</tr>
<tr>
<td>2</td>
<td>(1,1) (2,0)</td>
<td>(2,1) (2,0)</td>
</tr>
<tr>
<td>1</td>
<td>(0,1) (1,0)</td>
<td>(1,1) (1,0)</td>
</tr>
<tr>
<td>0</td>
<td>(0,0)</td>
<td>(0,1) (0,0)</td>
</tr>
</tbody>
</table>
Statistical Model for List Experiment

- Submodel for the response to the sensitive item \(Z_i^* \):

 \[
 \Pr(Z_i^* = 1 \mid X_i) = \logit^{-1}(\alpha + \beta^\top X_i)
 \]

- Submodel for the responses to the control items \(Y_i^* \):

 \[
 \Pr(Y_i^* = y \mid X_i, Z_i^*) = \text{Binomial}(J, \logit^{-1}(\gamma + \delta^\top X_i + \zeta Z_i^*))
 \]

- Combine them under the likelihood framework
Model for Endorsement Experiment (Bullock, Imai & Shapiro 2011)

- Setup:
 - T_i: treatment
 - Y_i: observed (ordinal) response
 - Y_i^*: latent (continuous) response
 - X_i: observed covariates
 - V_i^*: latent ideological position
 - Z_i^*: latent additional support inducted by the endorsement

- Latent measurement model:
 \[Y_i^* \overset{\text{indep.}}{\sim} \mathcal{N}(\beta(V_i^* + T_i Z_i^*) - \alpha, 1) \]
 with appropriate cut-points

- Hierarchical model V_i^* and Z_i^*:
 \[V_i^* \overset{\text{indep.}}{\sim} \mathcal{N}(\delta^\top X_i, 1) \]
 \[Z_i^* \overset{\text{indep.}}{\sim} \mathcal{N}(\lambda^\top X_i, \omega^2) \]

- Probability of positive support: $\Pr(Z_i^* > 0 | X_i)$
Model for Randomized Response (Blair, Imai & Zhou 2014)

- Setup:
 - Y_i: observed response
 - Z_i^*: latent response to the sensitive item
 - X_i: covariates

- The model is,

$$
\Pr(Z_i^* = 1 \mid X_i) = \logit^{-1}(\alpha + \beta^\top X_i)
$$

- The likelihood function is given by,

$$
\prod_{i=1}^{n} \left\{ \frac{1}{2} \cdot \logit^{-1}(\alpha + \beta^\top X_i) + \frac{1}{2} \right\}^{Y_i} \left\{ 1 - \frac{1}{2} \cdot \logit^{-1}(\alpha + \beta^\top X_i) - \frac{1}{2} \right\}^{1-Y_i}
$$

- Many other designs and accompanying methods are available
Bias of the Direct Question

Proportion of 'no' votes on Personhood

Actual vote

Direct question

Kosuke Imai (Princeton) Sensitive Questions July 16, 2015 (Keio) 13 / 30
Pooled Analysis

Estimated proportion of 'no' votes on Personhood:

- Direct Question (n = 2,655)
- List Experiment (n = 1,352)
- Endorsement Experiment (n = 1,841)
- Randomized Response (n = 943)

- Unweighted
- Weighted
- Regression Adjusted

actual vote share
County-level Analysis

Unweighted

Direct Question
bias = 0.249 RMSE = 0.254

List Experiment
bias = 0.170 RMSE = 0.183

Endorsement Experiment
bias = −0.016 RMSE = 0.102

Randomized Response
bias = −0.022 RMSE = 0.074

Weighted

Direct Question
bias = 0.215 RMSE = 0.224

List Experiment
bias = 0.144 RMSE = 0.161

Endorsement Experiment
bias = 0.030 RMSE = 0.139

Randomized Response
bias = −0.042 RMSE = 0.119

Regression Adjusted

Direct Question
bias = 0.198 RMSE = 0.204

List Experiment
bias = 0.124 RMSE = 0.142

Endorsement Experiment
bias = 0.118 RMSE = 0.141

Randomized Response
bias = 0.010 RMSE = 0.067
How do we measure civilian attitudes in a conflict setting?

Current efforts in Afghanistan rely on direct questions:
1. USAID (TCAPF): “Who do you believe can solve your problems?”
2. ISAF (ANQAR): “Over the past 6 months, do you think the Taliban have grown stronger, grown weaker, or remained the same?”

Why are direct questions a bad idea?
1. Threats to enumerators and respondents
2. Nonresponse, social desirability bias
3. Interviews are public
4. Danger of selection bias in sampling locations (role of gatekeepers)

ANQAR (November-December 2011): 50% refusal rate
Public Nature of Interviews
Surveying in the Heartland of Insurgency

Kosuke Imai (Princeton)

Sensitive Questions

July 16, 2015 (Keio)
Script for the control group:

A recent proposal calls for the sweeping reform of the Afghan prison system, including the construction of new prisons in every district to help alleviate overcrowding in existing facilities. Though expensive, new programs for inmates would also be offered, and new judges and prosecutors would be trained. How do you feel about this proposal?

Strongly agree; Agree; Indifferent; Disagree; Strongly disagree; Don’t Know; Refuse to answer
Script for the treatment group:

A recent proposal by ISAF calls for the sweeping reform of the Afghan prison system, including the construction of new prisons in every district to help alleviate overcrowding in existing facilities. Though expensive, new programs for inmates would also be offered, and new judges and prosecutors would be trained. How do you feel about this proposal?

Strongly agree; Agree; Indifferent; Disagree; Strongly disagree; Don’t Know; Refuse to answer
Data from the Endorsement Experiments

<table>
<thead>
<tr>
<th></th>
<th>Direct Elections</th>
<th>Prison Reform</th>
<th>Independent Election Commission</th>
<th>Anti-Corruption Reform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
<td>Taliban</td>
<td>ISAF</td>
<td>Control</td>
<td></td>
</tr>
<tr>
<td>(N = 2754)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Helmand</td>
<td>Taliban</td>
<td>ISAF</td>
<td>Control</td>
<td></td>
</tr>
<tr>
<td>(N = 855)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Khost</td>
<td>Taliban</td>
<td>ISAF</td>
<td>Control</td>
<td></td>
</tr>
<tr>
<td>(N = 630)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kunar</td>
<td>Taliban</td>
<td>ISAF</td>
<td>Control</td>
<td></td>
</tr>
<tr>
<td>(N = 396)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Logar</td>
<td>Taliban</td>
<td>ISAF</td>
<td>Control</td>
<td></td>
</tr>
<tr>
<td>(N = 486)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urozgan</td>
<td>Taliban</td>
<td>ISAF</td>
<td>Control</td>
<td></td>
</tr>
<tr>
<td>(N = 387)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Strongly agree**
- **Agree**
- **Indifferent**
- **Disagree**
- **Strongly disagree**
- **Don't Know**
- **Refused**

Kosuke Imai (Princeton)
Sensitive Questions
July 16, 2015 (Keio)
Script for the control group:

I’m going to read you a list with the names of different groups and individuals on it. After I read the entire list, I’d like you to tell me how many of these groups and individuals you broadly support, meaning that you generally agree with the goals and policies of the group or individual. Please don’t tell me which ones you generally agree with; only tell me how many groups or individuals you broadly support.

Karzai Government; National Solidarity Program; Local Farmers
List Experiments

► Script for the treatment group:

I’m going to read you a list with the names of different groups and individuals on it. After I read the entire list, I’d like you to tell me how many of these groups and individuals you broadly support, meaning that you generally agree with the goals and policies of the group or individual. Please don’t tell me which ones you generally agree with; only tell me how many groups or individuals you broadly support.

Karzai Government; National Solidarity Program; Local Farmers; ISAF
Need for validation \implies Multiple measurement strategy

Two measures should give similar results

What is the probability of supporting ISAF?

1. List: prob. of saying yes to the sensitive item
2. Endorsement: prob. of endorsement having a positive effect on support for policy

These probabilities should be similar!

They can be estimated with a new multivariate regression method

Endorsement and list experiments can even be combined for a joint analysis
Statistical Analysis of Endorsement Experiments

- **Item response theory** to combine questions:

\[
Pr(Y_{ij} = 1 \mid T_i = k) = \Phi(\alpha_j + \beta_j(x_i + s_{ijk}))
\]

- **\(\alpha_j\)**: average popularity of policy \(j\)
- **\(\beta_j\)**: how much policy \(j\) differentiates pro- and anti-reform respondents
- **\(x_i\)**: “ideal point” = how pro-reform respondent \(i\) is
- **\(s_{ijk}\)**: support level for combatant \(k\) in policy \(j\)

- **Multi-stage sampling \(\Rightarrow\) Multi-level modeling**

\[
\begin{align*}
\lambda_{k,\text{village}[i]} & \sim \mathcal{N}(\lambda_{k,\text{district}[i]} + Z_{i}^{\top} \lambda^Z_k, \omega^2_{k,\text{village}}) \\
\lambda_{k,\text{district}[i]} & \sim \mathcal{N}(\lambda_{k,\text{province}[i]} + V_{\text{village}[i]}^{\top} \lambda^V_k, \omega^2_{k,\text{district}}) \\
\lambda_{k,\text{province}[i]} & \sim \mathcal{N}(\lambda_{k} + W_{\text{district}[i]}^{\top} \lambda^W_k, \omega^2_{k,\text{province}})
\end{align*}
\]

- **Same multi-level structure for ideal points \(x_i\)**
Descriptive Comparison: Overall

Control Group

$\rho = 0.16$

$\tau = 0.10$

Endorsement Experiment

ISAF Treatment Group

$\rho = 0.52$

$\tau = 0.43$
Descriptive Comparison: Question by Question

Direct Elections (p < .01)
\[\rho = 0.44 \]
\[\tau = 0.37 \]

Prison Reform (p = 0.26)
\[\rho = 0.12 \]
\[\tau = 0.10 \]

Election Commission (p < .01)
\[\rho = 0.44 \]
\[\tau = 0.38 \]

Corruption Reform (p < .01)
\[\rho = 0.50 \]
\[\tau = 0.42 \]
Concluding Remarks

- Direct question is severely biased
- All indirect methods reduce bias:
 - Endorsement and randomized response \(\leadsto\) least bias
 - List experiment \(\leadsto\) ceiling/floor effects, design effects
 - Ease of implementation: list > endorse > randomized response
- Use of multiple-measurement strategies when truth is not available
- Future research directions:
 - How to balance bias, precision, and cost
 - Use aggregate-level truth to improve individual-level estimates
- Open-source software:
 - list for list experiment (Blair, Imai & Park)
 - endorse for endorsement experiment (Shiraito & Imai)
 - rr for randomized response (Blair, Imai & Zhou)
Development of new methods:

- “Statistical Analysis of Endorsement Experiments: Measuring Support for Militant Groups in Pakistan.” *Political Analysis*
- “Multivariate Regression Analysis for the Item Count Technique.” *Journal of the American Statistical Association*
- “Statistical Analysis of List Experiments.” *Political Analysis*
- “Using the Predicted Responses from List Experiments as Explanatory Variables in Regression Models.” *Political Analysis*
- “Design and Analysis of the Randomized Response Technique.” *Journal of the American Statistical Association*

Empirical applications and validations:

- “Explaining Support for Combatants during Wartime: A Survey Experiment in Afghanistan.” *American Political Science Review*
- “Can Civilian Attitudes Predict Civil War Violence?”