Experiments, Statistics, and Causal Mechanisms

- Causal inference is a central goal of most scientific research
- Experiments as gold standard for estimating causal effects
- But, scientists actually care about causal mechanisms
- Knowledge about causal mechanisms can also improve policies

- A major criticism of experimentation:
 it can only determine whether the treatment causes changes in the outcome, but not how and why

- Experiments merely provide a black box view of causality

- Key Challenge: How can we design and analyze experiments to identify causal mechanisms?
Overview of the Talk

- Show the limitation of a common approach
- Consider alternative experimental designs
- What is a minimum set of assumptions required for identification under each design?
- How much can we learn without the key identification assumptions under each design?
- Identification of causal mechanisms is possible but difficult
- Distinction between design and statistical assumptions
- Roles of creativity and technological developments
Causal Mechanisms as Indirect Effects

- What is a causal mechanism?
- Cochran (1957)’s example: soil fumigants increase farm crops by reducing eel-worms
- Political science examples: resource curse, habitual voting
- Causal mediation analysis

\[\text{Mediator, } M \]

\[\text{Treatment, } T \rightarrow \text{Outcome, } Y \]

- Quantities of interest: Direct and indirect effects
- Fast growing methodological literature

Kosuke Imai (Princeton) | Experiments and Causal Mechanisms | UMBC 5 / 23

Formal Statistical Framework of Causal Inference

- Binary treatment: \(T_i \in \{0, 1\} \)
- Mediator: \(M_i \in \mathcal{M} \)
- Outcome: \(Y_i \in \mathcal{Y} \)
- Observed covariates: \(X_i \in \mathcal{X} \)

- Potential mediators: \(M_i(t) \) where \(M_i = M_i(T_i) \)
- Potential outcomes: \(Y_i(t, m) \) where \(Y_i = Y_i(T_i, M_i(T_i)) \)

- Fundamental problem of causal inference (Holland): \textit{Only one potential value is observed}
Defining and Interpreting Indirect Effects

- Total causal effect:
 \[\tau_i \equiv Y_i(1, M_i(1)) - Y_i(0, M_i(0)) \]

- Indirect (causal mediation) effects (Robins and Greenland; Pearl):
 \[\delta_i(t) \equiv Y_i(t, M_i(1)) - Y_i(t, M_i(0)) \]

- Change \(M_i(0) \) to \(M_i(1) \) while holding the treatment constant at \(t \)
- Effect of a change in \(M_i \) on \(Y_i \) that would be induced by treatment

- Fundamental problem of causal mechanisms:
 \[\text{For each unit } i, \ Y_i(t, M_i(t)) \text{ is observable but } Y_i(t, M_i(1 - t)) \text{ is not even observable} \]

Defining and Interpreting Direct Effects

- Direct effects:
 \[\zeta_i(t) \equiv Y_i(1, M_i(t)) - Y_i(0, M_i(t)) \]

- Change \(T_i \) from 0 to 1 while holding the mediator constant at \(M_i(t) \)
- Causal effect of \(T_i \) on \(Y_i \), holding mediator constant at its potential value that would be realized when \(T_i = t \)

- Total effect = indirect effect + direct effect:
 \[\tau_i = \frac{1}{2} \{ \delta_i(0) + \delta_i(1) + \zeta_i(0) + \zeta_i(1) \} \]
 \[= \delta_i + \zeta_i \text{ if } \delta_i = \delta_i(0) = \delta_i(1) \text{ and } \zeta_i = \zeta_i(0) = \zeta_i(1) \]
Mechanisms, Manipulations, and Interactions

Mechanisms

- Indirect effects:
 \[\delta_i(t) \equiv Y_i(t, M_i(1)) - Y_i(t, M_i(0)) \]

- Counterfactuals about treatment-induced mediator values

Manipulations

- Controlled direct effects:
 \[\xi_i(t, m, m') \equiv Y_i(t, m) - Y_i(t, m') \]

- Causal effect of directly manipulating the mediator under \(T_i = t \)

Interactions

- Interaction effects:
 \[\xi(1, m, m') - \xi(0, m, m') \neq 0 \]

- Doesn’t imply the existence of a mechanism

Single Experiment Design

Assumption Satisfied

- Randomization of treatment
 \[\{ Y_i(t, m), M_i(t') \} \perp \perp T_i | X_i \]

Key Identifying Assumption

- Sequential Ignorability:
 \[Y_i(t, m) \perp M_i | T_i, X_i \]

- Selection on observables
- Violated if there are unobservables that affect mediator and outcome
Identification under the Single Experiment Design

- Sequential ignorability yields nonparametric identification
- Under the single experiment design and sequential ignorability,
 \[\bar{\delta}(t) = \int \int \mathbb{E}(Y_i \mid M_i, T_i = t, X_i) \{dP(M_i \mid T_i = 1, X_i) - dP(M_i \mid T_i = 0, X_i)\} \, dP(X_i) \]
- Linear structural equation modeling (a.k.a. Baron-Kenny)
- Sequential ignorability is an untestable assumption
- **Sensitivity analysis**: How large a departure from sequential ignorability must occur for the conclusions to no longer hold?

Sensitivity Analysis

![Sensitivity Analysis Graph]

- **Average Mediation Effect**: \(\delta \)
- **Sensitivity Parameter**: \(\rho \)

Kosuke Imai (Princeton) | Experiments and Causal Mechanisms | UMBC 12 / 23
Identification Power of the Single Experiment Design

- How much can we learn without sequential ignorability?
- Sharp bounds on indirect effects (Sjölander):

\[
\begin{align*}
\max \left\{ -P^{011}_{001} - P^{110}_{010} - P^{110}_{000} - P^{110}_{001} - P^{111}_{110} \right\} &\leq \delta(1) \leq \min \left\{ P^{111}_{101} + P^{111}_{011} \right\} \\
\max \left\{ -P^{010}_{100} - P^{110}_{011} - P^{011}_{000} - P^{011}_{001} - P^{110}_{100} \right\} &\leq \delta(0) \leq \min \left\{ P^{010}_{000} + P^{110}_{001} + P^{101}_{100} \right\}
\end{align*}
\]

where \(P_{ymt} = \Pr(Y_i = y, M_i = m \mid T_i = t) \)

- The sign is not identified

- Can we design experiments to better identify causal mechanisms?

The Parallel Design

- Suppose we can directly manipulate the mediator without directly affecting the outcome
- **No manipulation effect assumption**: The manipulation has no direct effect on outcome other than through the mediator value
- Running two experiments in parallel:

 Experiment 1
 1) Randomize treatment
 2) Measure mediator
 3) Measure outcome

 Experiment 2
 1) Randomize treatment
 2) Randomize mediator
 3) Measure outcome
Identification under the Parallel Design

- Difference between manipulation and mechanism

<table>
<thead>
<tr>
<th>Prop.</th>
<th>$M_i(1)$</th>
<th>$M_i(0)$</th>
<th>$Y_i(t, 1)$</th>
<th>$Y_i(t, 0)$</th>
<th>$\delta_i(t)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>0.3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0.3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

- $\mathbb{E}(M_i(1) - M_i(0)) = \mathbb{E}(Y_i(t, 1) - Y_i(t, 0)) = 0.2$, but $\bar{\delta}(t) = -0.2$

- Is the randomization of mediator sufficient? No
- The no interaction assumption (Robins) yields point identification
 \[Y_i(1, m) - Y_i(1, m') = Y_i(0, m) - Y_i(0, m') \]

- Must hold at the unit level
- Not directly testable but indirect tests are possible

Sharp Bounds under the Parallel Design

- Again, a special case of binary mediator and outcome
- Use of linear programming (Balke and Pearl)
- Objective function:
 \[\mathbb{E}\{ Y_i(1, M_i(0)) \} = \sum_{y=0}^{1} \sum_{m=0}^{1} (\pi_{ym} + \pi_{y'm}) \]
 where $\pi_{y_1y_0m_1m_0} = \Pr(Y_i(1, 1) = y_1, Y_i(1, 0) = y_0, M_i(1) = m_1, M_i(0) = m_0)$
- Linear constraints implied by $\Pr(Y_i = y | M_i = m, T_i = t, D_i = 0)$, $\Pr(Y_i = y | M_i = m, T_i = t, D_i = 1)$, and the summation constraint
- Sharp bounds (expressions given in the paper) are more informative than those under the single experiment design
- Can sometimes identify the sign of average indirect effects
The Crossover Design

Basic Idea
- Want to observe $Y_i(1 - t, M_i(t))$
- Figure out $M_i(t)$ and then switch T_i while holding the mediator at this value
- Subtract direct effect from total effect

Key Identifying Assumptions
- No Manipulation Effect
- **No Carryover Effect**: First experiment doesn’t affect second experiment
- Not testable, longer “wash-out” period

The Encouragement Design

- Direct manipulation of mediator is often difficult
- Even if possible, the violation of no manipulation effect can occur
- Need for indirect and subtle manipulation

- Randomly encourage units to take a certain value of the mediator
- Instrumental variables assumptions (Angrist *et al.*):
 - Encouragement does not discourage anyone
 - Encouragement does not directly affects the outcome

- Not as informative as the parallel design
- Sharp bounds on the average “complier” indirect effects can be informative
Key Identifying Assumptions
- Encouragement doesn’t discourage anyone
- No Manipulation Effect
- No Carryover Effect

Identification Analysis
- Identify indirect effects for “compliers”
- No carryover effect assumption is indirectly testable (unlike the crossover design)

Comparing Alternative Designs
- **No manipulation**
 - Single experiment: sequential ignorability

- **Direct manipulation**
 - Parallel: no manipulation effect, no interaction
 - Crossover: no manipulation effect, no carryover effect

- **Indirect manipulation**
 - Encouragement: no manipulation effect, monotonicity, no interaction (?)
 - Crossover encouragement: no manipulation effect, monotonicity, no carryover effect
An Example from Social Science

- Brader et al.: media framing experiment
 - Single experiment design with statistical mediation analysis
 - Treatment: Ethnicity (Latino vs. Caucasian) of an immigrant
 - Mediator: anxiety
 - Outcome: immigration
- Emotion: difficult to directly manipulate but indirect manipulation may be possible
- An artificial data consistent with the observed data

An Example from Behavioral Neuroscience

Question: What mechanism links low offers in an ultimatum game with “irrational” rejections?

- A brain region known to be related to fairness becomes more active when unfair offer received (single experiment design)

Design solution: manipulate mechanisms with TMS

- Knoch et al. use TMS to manipulate — turn off — one of these regions, and then observes choices (parallel design)
Concluding Remarks

- Identification of causal mechanisms is difficult but is possible.
- Additional assumptions are required.

Five strategies:

1. Single experiment design
2. Parallel design
3. Crossover design
4. Encouragement design
5. Crossover encouragement design

- Statistical assumptions: sequential ignorability, no interaction.
- Design assumptions: no manipulation, no carryover effect.
- Experimenters’ creativity and technological development to improve the validity of these design assumptions.