Causal Interaction in High Dimension

Naoki Egami Kosuke Imai
Princeton University

Annual Summer Meeting
The Society for Political Methodology

University of Rochester
July 23, 2015
Interaction Effects and Causal Heterogeneity

1. **Moderation**
 - How do treatment effects vary across individuals?
 - Who benefits from (or is harmed by) the treatment?
 - Interaction between treatment and pre-treatment covariates

2. **Causal interaction**
 - What aspects of a treatment are responsible for causal effects?
 - What combination of treatments is efficacious?
 - Interaction between treatment variables

3. **Individualized treatment regimes**
 - What combination of treatments is optimal for a given individual?
Causal Interaction in High Dimension

- High dimension = many treatments, each having multiple levels

- A motivating application: Conjoint analysis (Hainmueller et al. 2014)
 - survey experiments to measure immigration preferences
 - a representative sample of 1,396 American adults
 - each respondent evaluates 5 pairs of immigrant profiles
 - gender\(^2\), education\(^7\), origin\(^{10}\), experience\(^4\), plan\(^4\), language\(^4\), profession\(^{11}\), application reason\(^3\), prior trips\(^5\)
 - Over 1 million treatment combinations!
 - What combinations of immigrant characteristics make them preferred?

- Too many treatment combinations \(\Rightarrow\) Need for an effective summary
- Interaction effects play an essential role
Two Interpretations of Causal Interaction

1 **Conditional effect interpretation:**
 - Does the effect of one treatment change as we vary the value of another treatment?
 - Does the effect of being black change depending on whether an applicant is male or female?
 - Useful for testing moderation among treatments

2 **Interactive effect interpretation:**
 - Does a combination of treatments induce an *additional effect* beyond the sum of separate effects attributable to each treatment?
 - Does being a black female induce an additional effect beyond the effect of being black and that of being female?
 - Useful for finding efficacious treatment combinations in high dimension
An Illustration in the 2×2 Case

- Two binary treatments: A and B
- Potential outcomes: $Y(a, b)$ where $a, b \in \{0, 1\}$
- Conditional effect interpretation:

$$\underbrace{[Y(1, 1) - Y(0, 1)]} - \underbrace{[Y(1, 0) - Y(0, 0)]}$$

\Rightarrow requires the specification of moderator

- Interactive effect interpretation:

$$\underbrace{[Y(1, 1) - Y(0, 0)]} - \underbrace{[Y(1, 0) - Y(0, 0)]} - \underbrace{[Y(0, 1) - Y(0, 0)]}$$

\Rightarrow requires the specification of baseline condition

- The same quantity but two different interpretations
Difficulty of the Conventional Approach

- **Lack of invariance** to the baseline condition
 \[\Rightarrow \text{Inference depends on the choice of baseline condition} \]

- **3 \times 3** example:
 - Treatment \(A \in \{a_0, a_1, a_2\} \) and Treatment \(B \in \{b_0, b_1, b_2\} \)
 - Regression model with the baseline condition \((a_0, b_0)\):
 \[
 \mathbb{E}(Y \mid A, B) = 1 + a_1^* + a_2^* + b_2^* + a_1^*b_2^* + 2a_2^*b_2^* + 3a_2^*b_1^*
 \]
 - Interaction effect for \((a_2, b_2)\) > Interaction effect for \((a_1, b_2)\)
 - Another equivalent model with the baseline condition \((a_0, b_1)\):
 \[
 \mathbb{E}(Y \mid A, B) = 1 + a_1^* + 4a_2^* + b_2^* + a_1^*b_2^* - a_2^*b_2^* - 3a_2^*b_0^*
 \]
 - Interaction effect for \((a_2, b_2)\) < Interaction effect for \((a_1, b_2)\)
 - Interaction effect for \((a_2, b_1)\) is zero under the second model
 - All interaction effects with at least one baseline value are zero
Empirical Illustration: Lack of Invariance

- Linear regression with main effects and two-way interactions
- Baseline: \textit{lowest} levels of job experiences and education

<table>
<thead>
<tr>
<th>Job experience</th>
<th>None</th>
<th>4th grade</th>
<th>8th grade</th>
<th>High school</th>
<th>Two-year college</th>
<th>College</th>
<th>Graduate</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1–2 years</td>
<td>0</td>
<td>0.009</td>
<td>−0.019</td>
<td>−0.032</td>
<td>0.100</td>
<td>−0.044</td>
<td>−0.064</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.063)</td>
<td>(0.063)</td>
<td>(0.063)</td>
<td>(0.064)</td>
<td>(0.064)</td>
<td>(0.063)</td>
</tr>
<tr>
<td>3–5 years</td>
<td>0</td>
<td>0.016</td>
<td>0.056</td>
<td>0.165</td>
<td>0.107</td>
<td>0.010</td>
<td>0.117</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.063)</td>
<td>(0.064)</td>
<td>(0.064)</td>
<td>(0.064)</td>
<td>(0.065)</td>
<td>(0.063)</td>
</tr>
<tr>
<td>> 5 years</td>
<td>0</td>
<td>−0.050</td>
<td>0.126</td>
<td>0.042</td>
<td>0.058</td>
<td>−0.094</td>
<td>0.015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.064)</td>
<td>(0.064)</td>
<td>(0.063)</td>
<td>(0.064)</td>
<td>(0.064)</td>
<td>(0.064)</td>
</tr>
</tbody>
</table>
The Effects of Changing the Baseline Condition

- Same linear regression but different baseline
- Baseline: *highest* levels of job experiences and education

<table>
<thead>
<tr>
<th>Job experience</th>
<th>None</th>
<th>4th grade</th>
<th>8th grade</th>
<th>High school</th>
<th>Two-year college</th>
<th>College</th>
<th>Graduate</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>0.015</td>
<td>0.065</td>
<td>−0.111</td>
<td>−0.027</td>
<td>−0.043</td>
<td>0.109</td>
<td>0</td>
</tr>
<tr>
<td>(0.064)</td>
<td>(0.062)</td>
<td>(0.064)</td>
<td>(0.064)</td>
<td>(0.061)</td>
<td>(0.063)</td>
<td>(0.063)</td>
<td></td>
</tr>
<tr>
<td>1–2 years</td>
<td>0.078</td>
<td>0.138</td>
<td>−0.066</td>
<td>0.006</td>
<td>0.120</td>
<td>0.129</td>
<td>0</td>
</tr>
<tr>
<td>(0.064)</td>
<td>(0.062)</td>
<td>(0.062)</td>
<td>(0.061)</td>
<td>(0.062)</td>
<td>(0.062)</td>
<td>(0.062)</td>
<td></td>
</tr>
<tr>
<td>3–5 years</td>
<td>−0.102</td>
<td>−0.036</td>
<td>−0.172</td>
<td>0.021</td>
<td>−0.054</td>
<td>0.002</td>
<td>0</td>
</tr>
<tr>
<td>(0.062)</td>
<td>(0.062)</td>
<td>(0.063)</td>
<td>(0.062)</td>
<td>(0.061)</td>
<td>(0.062)</td>
<td>(0.062)</td>
<td></td>
</tr>
<tr>
<td>> 5 years</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

(baseline)
The Contributions of the Paper

1 Problems of the conventional approach:
 - Lack of invariance to the choice of baseline condition
 - Difficulty of interpretation for higher-order interaction

2 Solution: Average Marginal Treatment Interaction Effect
 - invariant to baseline condition
 - same, intuitive interpretation even for high dimension
 - simple estimation procedure

3 Reanalysis of the immigration survey experiment
Two-way Causal Interaction

- Two factorial treatments:
 \[A \in \mathcal{A} = \{a_0, a_1, \ldots, a_{D_A-1}\} \]
 \[B \in \mathcal{B} = \{b_0, b_1, \ldots, b_{D_B-1}\} \]

- Assumption: **Full factorial design**
 1. Randomization of treatment assignment
 \[\{ Y(a_\ell, b_m) \}_{a_\ell \in \mathcal{A}, b_m \in \mathcal{B}} \perp \perp \{A, B\} \]
 2. Non-zero probability for all treatment combination
 \[\Pr(A = a_\ell, B = b_m) > 0 \quad \text{for all } a_\ell \in \mathcal{A} \quad \text{and} \quad b_m \in \mathcal{B} \]

- Fractional factorial design not allowed
 1. Use a small non-zero assignment probability
 2. Focus on a subsample
 3. Combine treatments
Non-Interaction Effects of Interest

1. **Average Treatment Combination Effect (ATCE):**
 - Average effect of treatment combination \((A, B) = (a_\ell, b_m)\) relative to the baseline condition \((A, B) = (a_0, b_0)\)

 \[\tau(a_\ell, b_m; a_0, b_0) \equiv \mathbb{E}\{Y(a_\ell, b_m) - Y(a_0, b_0)\} \]

 - Which treatment combination is most efficacious?

2. **Average Marginal Treatment Effect (AMTE; Hainmueller et al. 2014):**
 - Average effect of treatment \(A = a_\ell\) relative to the baseline condition \(A = a_0\) averaging over the other treatment \(B\)

 \[\psi(a_\ell, a_0) \equiv \int_B \mathbb{E}\{Y(a_\ell, B) - Y(a_0, B)\}dF(B) \]

 - Which treatment is effective on average?
The Conventional Approach to Causal Interaction

- **Average Treatment Interaction Effect (ATIE):**
 \[\xi(a_\ell, b_m; a_0, b_0) \equiv \mathbb{E}\{Y(a_\ell, b_m) - Y(a_0, b_m) - Y(a_\ell, b_0) + Y(a_0, b_0)\} \]

- **Conditional effect interpretation:**
 \[\mathbb{E}\{Y(a_\ell, b_m) - Y(a_0, b_m)\} - \mathbb{E}\{Y(a_\ell, b_0) - Y(a_0, b_0)\} \]
 Effect of \(A = a_\ell \) when \(B = b_m \)
 Effect of \(A = a_\ell \) when \(B = b_0 \)

- **Interactive effect interpretation:**
 \[\tau(a_\ell, b_m; a_0, b_0) - \mathbb{E}\{Y(a_\ell, b_0) - Y(a_0, b_0)\} - \mathbb{E}\{Y(a_0, b_m) - Y(a_0, b_0)\} \]
 ATCE
 Effect of \(A = a_\ell \) when \(B = b_0 \)
 Effect of \(B = b_m \) when \(A = a_0 \)

- **Estimation:** Linear regression with interaction terms
Lack of Invariance to the Baseline Condition

- Comparison between two ATIEs should not be affected by the choice of baseline conditions.
- We prove that the ATIEs are *neither interval nor order invariant*.

Interval invariance:

\[
\xi(a_\ell, b_m; a_0, b_0) - \xi(a_\ell', b_m'; a_0, b_0) \\
= \xi(a_\ell, b_m; a_\tilde{\ell}, b_\tilde{m}) - \xi(a_\ell', b_m'; a_\tilde{\ell}, b_\tilde{m}),
\]

Order invariance:

\[
\xi(a_\ell, b_m; a_0, b_0) \geq \xi(a_\ell', b_m'; a_0, b_0) \\
\iff \xi(a_\ell, b_m; a_\tilde{\ell}, b_\tilde{m}) \geq \xi(a_\ell', b_m'; a_\tilde{\ell}, b_\tilde{m}).
\]
Ineffectiveness of Interaction Plot in High Dimension

Problem: it does not plot interaction effects themselves
ATIE is Sensitive to the Choice of Baseline Condition

<table>
<thead>
<tr>
<th>Job experience</th>
<th>None</th>
<th>4th grade</th>
<th>8th grade</th>
<th>High school</th>
<th>Two-year college</th>
<th>College</th>
<th>Graduate</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1–2 years</td>
<td>0</td>
<td>0.009</td>
<td>−0.019</td>
<td>−0.032</td>
<td>0.100</td>
<td>−0.044</td>
<td>−0.064</td>
</tr>
<tr>
<td>3–5 years</td>
<td>0</td>
<td>0.016</td>
<td>0.056</td>
<td>0.165</td>
<td>0.107</td>
<td>0.010</td>
<td>0.117</td>
</tr>
<tr>
<td>> 5 years</td>
<td>0</td>
<td>−0.050</td>
<td>0.126</td>
<td>0.042</td>
<td>0.058</td>
<td>−0.094</td>
<td>0.015</td>
</tr>
</tbody>
</table>
ATIE is Sensitive to the Choice of Baseline Condition

<table>
<thead>
<tr>
<th>Job experience</th>
<th>None</th>
<th>4th grade</th>
<th>8th grade</th>
<th>High school</th>
<th>Two-year college</th>
<th>College</th>
<th>Graduate</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>0.015</td>
<td>0.065</td>
<td>-0.111</td>
<td>-0.027</td>
<td>-0.043</td>
<td>0.109</td>
<td>0</td>
</tr>
<tr>
<td>1–2 years</td>
<td>0.078</td>
<td>0.138</td>
<td>-0.066</td>
<td>0.006</td>
<td>0.120</td>
<td>0.129</td>
<td>0</td>
</tr>
<tr>
<td>3–5 years</td>
<td>-0.102</td>
<td>-0.036</td>
<td>-0.172</td>
<td>0.021</td>
<td>-0.054</td>
<td>0.002</td>
<td>0</td>
</tr>
<tr>
<td>> 5 years</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
The New Causal Interaction Effect

- **Average Marginal Treatment Interaction Effect (AMTIE):**

\[\pi(a_\ell, b_m; a_0, b_0) \equiv \tau(a_\ell, b_m; a_0, b_0) - \psi(a_\ell, a_0) - \psi(b_m, b_0) \]

\[\text{ATCE of } (A, B) = (a_\ell, b_m) \quad \text{AMTE of } a_\ell \quad \text{AMTE of } b_m \]

- Interactive effect interpretation: additional effect induced by \(A = a_\ell \) and \(B = b_m \) together beyond the separate effect of \(A = a_\ell \) and that of \(B = b_m \)

- Compare this with ATIE:

\[\tau(a_\ell, b_m; a_0, b_0) - \mathbb{E}\{Y(a_\ell, b_0) - Y(a_0, b_0)\} - \mathbb{E}\{Y(a_0, b_m) - Y(a_0, b_0)\} \]

\[\text{ATCE} \quad \text{Effect of } A = a_\ell \text{ when } B = b_0 \quad \text{Effect of } B = b_m \text{ when } A = a_0 \]

- We prove that the AMTIEs are both *interval and order invariant*

- The AMTIEs do depend on the distribution of treatment assignment
 1. specified by one’s experimental design
 2. motivated by the target population
AMTIE is Invariant to the Choice of Baseline Condition

<table>
<thead>
<tr>
<th>Job experience</th>
<th>None</th>
<th>4th grade</th>
<th>8th grade</th>
<th>High school</th>
<th>Two-year college</th>
<th>College</th>
<th>Graduate</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>0</td>
<td>−0.004</td>
<td>−0.028</td>
<td>−0.035</td>
<td>−0.031</td>
<td>0.012</td>
<td>−0.010</td>
</tr>
<tr>
<td>1–2 years</td>
<td>−0.00</td>
<td>−0.001</td>
<td>−0.025</td>
<td>−0.040</td>
<td>0.024</td>
<td>−0.009</td>
<td>−0.044</td>
</tr>
<tr>
<td>3–5 years</td>
<td>−0.040</td>
<td>−0.019</td>
<td>−0.042</td>
<td>0.031</td>
<td>−0.026</td>
<td>−0.022</td>
<td>0.024</td>
</tr>
<tr>
<td>> 5 years</td>
<td>−0.014</td>
<td>−0.031</td>
<td>0.041</td>
<td>−0.011</td>
<td>−0.021</td>
<td>−0.036</td>
<td>−0.024</td>
</tr>
</tbody>
</table>
AMTIE is Invariant to the Choice of Baseline Condition

<table>
<thead>
<tr>
<th>Job experience</th>
<th>None</th>
<th>4th grade</th>
<th>8th grade</th>
<th>High school</th>
<th>Two-year college</th>
<th>College</th>
<th>Graduate</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>0.024</td>
<td>0.020</td>
<td>−0.004</td>
<td>−0.011</td>
<td>−0.007</td>
<td>0.036</td>
<td>0.014</td>
</tr>
<tr>
<td>1–2 years</td>
<td>0.023</td>
<td>0.023</td>
<td>−0.001</td>
<td>−0.016</td>
<td>0.048</td>
<td>0.015</td>
<td>−0.020</td>
</tr>
<tr>
<td>3–5 years</td>
<td>−0.016</td>
<td>0.005</td>
<td>−0.018</td>
<td>0.055</td>
<td>−0.002</td>
<td>0.002</td>
<td>0.048</td>
</tr>
<tr>
<td>> 5 years</td>
<td>0.010</td>
<td>−0.007</td>
<td>0.065</td>
<td>0.013</td>
<td>0.003</td>
<td>−0.012</td>
<td>0</td>
</tr>
</tbody>
</table>
The Relationships between the ATIE and the AMTIE

1. The AMTIE is a linear function of the ATIEs:

\[\pi(a_\ell, b_m; a_0, b_0) = \xi(a_\ell, b_m; a_0, b_0) - \sum_{a \in A} \Pr(A_i = a) \xi(a, b_m; a_0, b_0) \]

\[- \sum_{b \in B} \Pr(B_i = b) \xi(a_\ell, b; a_0, b_0) \]

2. The ATIE is also a linear function of the AMTIEs:

\[\xi(a_\ell, b_m; a_0, b_0) = \pi(a_\ell, b_m; a_0, b_0) - \pi(a_\ell, b_0; a_0, b_0) - \pi(a_0, b_m; a_0, b_0) \]

- Absence of causal interaction:
 All of the AMTIEs are zero if and only if all of the ATIEs are zero

- The AMTIEs can be estimated by first estimating the ATIEs
Higher-order Causal Interaction

- J factorial treatments: $\mathbf{T} = (T_1, \ldots, T_J)$
- Assumptions:
 1. Full factorial design

 $$Y(t) \perp \perp \mathbf{T} \quad \text{and} \quad \Pr(\mathbf{T} = t) > 0 \quad \text{for all } t$$
 2. Independent treatment assignment

 $$T_j \perp \perp \mathbf{T}_{-j} \quad \text{for all } j$$
- Assumption 2 is not necessary for identification but considerably simplifies estimation
- We are interested in the K-way interaction where $K \leq J$
- We extend all the results for the 2-way interaction to this general case
Generalize the 2-way ATIE by marginalizing the other treatments $T^{1:2}$

$$\xi_{1:2}(t_1, t_2; t_{01}, t_{02}) \equiv \int \mathbb{E} \left\{ Y(t_1, t_2, T^{1:2}) - Y(t_{01}, t_2, T^{1:2})
ight. \\
\left. - Y(t_1, t_{02}, T^{1:2}) + Y(t_{01}, t_{02}, T^{1:2}) \right\} dF(T^{1:2})$$

In the literature, the 3-way ATIE is defined as

$$\xi_{1:3}(t_1, t_2, t_3; t_{01}, t_{02}, t_{03}) \equiv \xi_{1:2}(t_1, t_2; t_{01}, t_{02} \mid T_3 = t_3) - \xi_{1:2}(t_1, t_2; t_{01}, t_{02} \mid T_3 = t_{03})$$

Higher-order ATIEs are similarly defined sequentially

- This representation is based on the conditional effect interpretation
- Problem: the conditional effect of conditional effects!
Interactive Interpretation of the Higher-order ATIE

- We show that the higher-order ATIE also has an interactive effect interpretation.

- Example: 3-way ATIE, $\xi_{1:3}(t_1, t_2, t_3; t_{01}, t_{02}, t_{03})$, equals

\[
\tau_{1:3}(t_1, t_2, t_3; t_{01}, t_{02}, t_{03}) \quad \text{ATCE}
\]

\[
- \left\{ \xi_{1:2}(t_1, t_2; t_{01}, t_{02} \mid T_3 = t_{03}) + \xi_{2:3}(t_2, t_3; t_{02}, t_{03} \mid T_1 = t_{01}) \right. \\
+ \left. \xi_{1:3}(t_1, t_3; t_{01}, t_{03} \mid T_2 = t_{02}) \right\} \quad \text{sum of 2-way conditional ATIEs}
\]

\[
- \left\{ \tau_1(t_1, t_{02}, t_{03}; t_{01}, t_{02}, t_{03}) + \tau_2(t_{01}, t_2, t_{03}; t_{01}, t_{02}, t_{03}) \right. \\
+ \left. \tau_3(t_{01}, t_{02}, t_3; t_{01}, t_{02}, t_{03}) \right\} \quad \text{sum of (1-way) ATCEs}
\]

- Problems:
 1. Lower-order conditional ATIEs rather than lower-order ATIEs are used.
 2. K-way ATCE \neq sum of all K-way and lower-order ATIEs.
 3. (We prove) Lack of invariance to the baseline conditions.
The K-way Average Marginal Treatment Interaction Effect

- **Definition:** the difference between the ATCE and the sum of lower-order AMTIEs
- **Interactive effect interpretation**
- **Example:** 3-way AMTIE, $\pi_{1:3}(t_1, t_2, t_3; t_{01}, t_{02}, t_{03})$, equals

\[
\begin{align*}
\tau_{1:3}(t_1, t_2, t_3; t_{01}, t_{02}, t_{03}) &= \text{ATCE} \\
- \left\{ \pi_{1:2}(t_1, t_2; t_{01}, t_{02}) + \pi_{2:3}(t_2, t_3; t_{02}, t_{03}) + \pi_{1:3}(t_1, t_3; t_{01}, t_{03}) \right\} &= \text{sum of 2-way AMTIEs} \\
- \left\{ \psi(t_1; t_{01}) + \psi(t_2; t_{02}) + \psi(t_3; t_{03}) \right\} &= \text{sum of (1-way) AMTEs}
\end{align*}
\]

- **Properties:**
 1. K-way ATCE = the sum of all K-way and lower-order AMTIEs
 2. Interval and order invariance to the baseline condition
 3. Derive the relationships between the AMTIEs and ATIEs for any order
Empirical Analysis of the Immigration Survey Experiment

- 5 factors \((\text{gender}^2, \text{education}^7, \text{origin}^{10}, \text{experience}^4, \text{plan}^4)\)
 1. full factorial design assumption
 2. computational tractability
- Matched-pair conjoint analysis: randomly choose one profile
- Binary outcome: whether a profile is selected
- Model with one-way, two-way, and three-way interaction terms
- \(p = 1,575\) and \(n = 6,980\)
- Curse of dimensionality \(\implies\) sparcity assumption
- Support vector machine with a lasso constraint (Imai & Ratkovic, 2013)
- Under-identified model that includes baseline conditions
- 99 non-zero and 1,476 zero coefficients
- Cross-validation for selecting a tuning parameter
- FindIt: Finding heterogeneous treatment effects
Three-way Effects:
- Education:Gender:Origin
- Education:Experience:Plan
- Education:Gender:Experience
- Education:Gender:Plan
- Gender:Experience:Plan
- Gender:Origin:Experience
- Gender:Origin:Plan

Two-way Effects:
- Origin:Experience
- Education:Origin
- Experience:Plan
- Education:Plan
- Education:Gender
- Gender:Plan
- Gender:Origin
- Gender:Experience

One-way Effects:
- Plan
- Education
- Origin
- Experience
- Gender

- **Range of AMTIEs:** importance of each factor and factor interaction
- **Sparcity-of-effects principle**
- gender appears to play a significant role in three-way interactions
- Exploration of level interactions
- \textbf{origin} \times \textbf{experience} interaction
- Baseline: India, None
- Only relative magnitude matters
- Little interaction for European origin
- Similar pattern for Mexico and Phillipines as well as Sudan and Somalia
Decomposing the Average Treatment Combination Effect

- **Two-way effect example (origin x experience):**

\[
\tau(\text{Somalia, 1-2 years; India, None})
\]

\[
-3.74
\]

\[
= \psi(\text{Somalia; India}) + \psi(1-2\text{years};\text{None}) + \pi(\text{Somalia, 1-2years; India, None})
\]

\[
-5.14 + 5.12 -3.72
\]

- **Three-way examples (education x gender x origin):**

\[
\tau(\text{Graduate, Male, India; Graduate, Female, India})
\]

\[
7.46
\]

\[
= \psi(\text{Male; Female}) + \pi(\text{Graduate, Male; Graduate, Female})
\]

\[
-0.77 -0.34
\]

\[
+ \pi(\text{Male, India; Female, India}) + \pi(\text{Graduate, Male, India; Graduate, Female, India})
\]

\[
1.56 + 7.01
\]
\[\tau(\text{High school, Male, Germany}; \text{High school, Female, Germany}) = -11.52\]
\[= \psi(\text{Male}; \text{Female}) + \pi(\text{High school, Male}; \text{High school, Female}) - 0.77 + \pi(\text{Male, Germany}; \text{Female, Germany}) - 3.34 + \pi(\text{High school, Male, Germany}; \text{High school, Female, Germany}) - 6.74\]
\[(n = 41; \ n = 56)\]
Concluding Remarks

- Interaction effects play an essential role in causal heterogeneity
 1. moderation
 2. causal interaction

- Two interpretations of causal interaction
 1. conditional effect interpretation (problematic in high dimension)
 2. interactive effect interpretation

- Average Marginal Treatment Interaction Effect
 1. interactive effect in high-dimension
 2. invariant to baseline condition
 3. enables effect decomposition
 4. \Rightarrow effective analysis of interactions in high-dimension

- Estimation challenges in high dimension
 1. group lasso, hierarchical interaction
 2. post-selection inference
References

Send comments and suggestions to negami@Princeton.Edu or kimai@Princeton.Edu