Experiments, Statistics, and Causal Mechanisms

- Causal inference is a central goal of social science
- Experiments as **gold standard** for estimating *causal effects*
- But, we really care about *causal mechanisms*

- A major criticism of experimentation (and statistics):

 it can only determine whether the treatment causes changes in the outcome, but not how and why

- Experiments are a **black box**
- Qualitative research uses process tracing

- Key Challenge: How can we design and analyze experiments to identify causal mechanisms?
- We propose new statistical methods and experimental designs for the identification of causal mechanisms
Overview of the Talk

- Identification of causal mechanisms in standard experiments
 1. Offer a general nonparametric identification and estimation strategy
 2. Modernize and extend causal mediation analysis
 3. Propose sensitivity analyses to assess the robustness

- New experimental designs for identification of causal mechanisms
 1. Derive the limitations of common approaches
 2. Propose alternative experimental designs
 3. Illustrate the ideas vis-à-vis a behavioral neuroscience experiment

Causal Mediation Analysis

- Graphical representation
 \[\text{Mediator, } M \]
 \[\text{Treatment, } T \rightarrow \text{Outcome, } Y \]

- Quantities of interest: Direct and indirect effects
- Fast growing methodological literature
Common Practice in the Discipline

- Regression
 \[Y_i = \alpha + \beta T_i + \gamma M_i + \delta X_i + \epsilon_i \]
- Each coefficient is interpreted as a causal effect
- Sometimes, it’s called marginal effect
- Idea: increase \(T_i \) by one unit while holding \(M_i \) and \(X_i \) constant
- Post-treatment bias: if you change \(T_i \), that may also change \(M_i \)
- Usual advice: only include causally prior variables
- But, then you lose causal mechanisms!

Formal Statistical Framework of Causal Inference

- Binary treatment: \(T_i \in \{0, 1\} \)
- Mediator: \(M_i \in \mathcal{M} \)
- Outcome: \(Y_i \in \mathcal{Y} \)
- Observed covariates: \(X_i \in \mathcal{X} \)
- Potential mediators: \(M_i(t) \) where \(M_i = M_i(T_i) \)
- Potential outcomes: \(Y_i(t, m) \) where \(Y_i = Y_i(T_i, M_i(T_i)) \)
- Fundamental problem of causal inference:
 \[\text{Only one potential outcome is observed} \]
Defining and Interpreting Causal Mediation Effects

- Total causal effect:
 \[\tau_i \equiv Y_i(1, M_i(1)) - Y_i(0, M_i(0)) \]

- Indirect (causal mediation) effects:
 \[\delta_i(t) \equiv Y_i(t, M_i(1)) - Y_i(t, M_i(0)) \]

- Causal effect of the change in \(M_i \) on \(Y_i \) that would be induced by treatment
- Change the mediator from \(M_i(0) \) to \(M_i(1) \) while holding the treatment constant at \(t \)
- **Fundamental problem:** For each unit \(i \), \(Y_i(t, M_i(t)) \) is observable but one can *never* observe \(Y_i(t, M_i(1 - t)) \)

Mechanisms, Manipulations, and Interactions

Mechanisms
- Indirect effects:
 \[\delta_i(t) \equiv Y_i(t, M_i(1)) - Y_i(t, M_i(0)) \]
- Counterfactuals about naturally occurring values

Manipulations
- Controlled direct effects:
 \[\xi_i(t, m, m') \equiv Y_i(t, m) - Y_i(t, m') \]
- Causal effect of directly manipulating the mediator under \(T_i = t \)

Interactions
- Interaction effects:
 \[\xi(1, m, m') - \xi(0, m, m') \neq 0 \]
- Doesn’t imply the existence of a mechanism
Nonparametric Identification

- Quantity of Interest: Average Causal Mediation Effects
 \[\delta(t) \equiv \mathbb{E}(\delta_i(t)) = \mathbb{E}\{Y_i(t, M_i(1)) - Y_i(t, M_i(0))\} \]
- Problem: \(Y_i(t, M_i(t)) \) is observed but \(Y_i(t, M_i(1-t)) \) can never be observed
- Proposed identification assumption: Sequential Ignorability
 \[\{Y_i(t', m), M_i(t)\} \perp T_i | X_i = x, \]
 \[Y_i(t', m) \perp M_i | T_i = t, X_i = x \]

Theorem 1 (Nonparametric Identification)

Under sequential ignorability,
\[\delta(t) = \int \int \mathbb{E}(Y_i | M_i, T_i = t, X_i) \{dP(M_i | T_i = 1, X_i) - dP(M_i | T_i = 0, X_i)\} dP(X_i), \]
\[\zeta(t) = \int \int \{\mathbb{E}(Y_i | M_i, T_i = 1, X_i) - \mathbb{E}(Y_i | M_i, T_i = 0, X_i)\} dP(M_i | T_i = t, X_i) dP(X_i). \]

Inference Under Sequential Ignorability

- Model outcome and mediator
- Outcome model: \(p(Y_i | T_i, M_i, X_i) \)
- Mediator model: \(p(M_i | T_i, X_i) \)
- A simplest setup: Linear Structural Equation Model (LSEM)
 \[M_i = \alpha_2 + \beta_2 T_i + \epsilon_{i2}, \]
 \[Y_i = \alpha_3 + \beta_3 T_i + \gamma M_i + \epsilon_{i3}. \]

Theorem 2 (Identification Under LSEM)

Under the LSEM and sequential ignorability, the average causal mediation effects are identified as \(\bar{\delta}(0) = \bar{\delta}(1) = \beta_2 \gamma. \)

- Can include the interaction between \(T_i \) and \(M_i \)
- Can use parametric or nonparametric regressions; probit, logit, ordered mediator, GAM, quantile regression, etc.
Need for Sensitivity Analysis

- The sequential ignorability assumption is often too strong
- Need to assess the robustness of findings via sensitivity analysis
- **Question**: How large a departure from the key assumption must occur for the conclusions to no longer hold?

Parametric sensitivity analysis by assuming

\[
\{ Y_i(t', m), M_i(t) \} \perp T_i \mid X_i = x
\]

but not

\[
Y_i(t', m) \perp M_i \mid T_i = t, X_i = x
\]

- Possible existence of unobserved *pre-treatment* confounder

Parametric Sensitivity Analysis

- **Sensitivity parameter**: \(\rho \equiv Corr(\epsilon_{i2}, \epsilon_{i3}) \)
- Sequential ignorability implies \(\rho = 0 \)
- Set \(\rho \) to different values and see how mediation effects change

Theorem 3

\[
\bar{\delta}(0) = \bar{\delta}(1) = \frac{\beta_2 \sigma_1}{\sigma_2} \left\{ \tilde{\rho} - \rho \sqrt{1 - \tilde{\rho}^2} / (1 - \rho^2) \right\},
\]

where \(\sigma_j^2 \equiv \text{var}(\epsilon_{ij}) \) *for* \(j = 1, 2 \) *and* \(\tilde{\rho} \equiv Corr(\epsilon_{i1}, \epsilon_{i2}) \).

- When do my results go away completely?
- \(\bar{\delta}(t) = 0 \) if and only if \(\rho = \tilde{\rho} \)
- Easy to estimate from the regression of \(Y_i \) on \(T_i \):

\[
Y_i = \alpha_1 + \beta_1 T_i + \epsilon_{i1}
\]
Interpreting Sensitivity Analysis with R squares

- Interpreting ρ: how small is too small?

- An unobserved (pre-treatment) confounder formulation:
 \[\epsilon_{i2} = \lambda_2 U_i + \epsilon'_{i2} \quad \text{and} \quad \epsilon_{i3} = \lambda_3 U_i + \epsilon'_{i3} \]

- How much does U_i have to explain for our results to go away?

- Sensitivity parameters: R squares
 1. Proportion of previously unexplained variance explained by U_i
 \[R^*_M \equiv 1 - \frac{\text{var}(\epsilon'_{i2})}{\text{var}(\epsilon_{i2})} \quad \text{and} \quad R^*_Y \equiv 1 - \frac{\text{var}(\epsilon'_{i3})}{\text{var}(\epsilon_{i3})} \]
 2. Proportion of original variance explained by U_i
 \[\tilde{R}^2_M \equiv \frac{\text{var}(\epsilon_{i2}) - \text{var}(\epsilon'_{i2})}{\text{var}(M_i)} \quad \text{and} \quad \tilde{R}^2_Y \equiv \frac{\text{var}(\epsilon_{i3}) - \text{var}(\epsilon'_{i3})}{\text{var}(Y_i)} \]

- Then reparameterize ρ using (R^*_M, R^*_Y) (or $(\tilde{R}^2_M, \tilde{R}^2_Y)$):
 \[\rho = \text{sgn}(\lambda_2 \lambda_3) R^*_M R^*_Y = \frac{\text{sgn}(\lambda_2 \lambda_3) \tilde{R}_M \tilde{R}_Y}{\sqrt{(1 - R^2_M)(1 - R^2_Y)}} \]

 where R^2_M and R^2_Y are from the original mediator and outcome models

- $\text{sgn}(\lambda_2 \lambda_3)$ indicates the direction of the effects of U_i on Y_i and M_i

- Set (R^*_M, R^*_Y) (or $(\tilde{R}^2_M, \tilde{R}^2_Y)$) to different values and see how mediation effects change
Empirical Illustration: Nelson et al. (APSR)

- How does media framing affect citizens’ political opinions?
- News stories about the Ku Klux Klan rally in Ohio

- **Treatment**: Free speech frame ($T_i = 0$) and public order frame ($T_i = 1$)
- Randomized experiment with sample size = 136

- **Mediators**: general attitudes about the importance of free speech and public order
- **Outcome**: tolerance for the Klan rally
- **Expected findings**: negative mediation effects

Analysis under Sequential Ignorability

Average Mediation Effects $\hat{\delta}(0) = \hat{\delta}(1) = -0.44$ [−0.87, −0.01]

Average Direct Effects $\hat{\zeta}(0) = \hat{\zeta}(1) = -0.02$ [−0.49, 0.47]

Average Total Effect $\hat{\tau} = -0.46$ [−1.11, 0.23]
Sensitivity Analysis with Respect to ρ

\[ACME(\rho) \]

Sensitivity Parameter: ρ

Average Mediation Effect: $\delta(t)$

Sensitivity Analysis with Respect to $(\tilde{R}_M^2, \tilde{R}_Y^2)$

\[ACME(\tilde{R}_M^2, \tilde{R}_Y^2), \text{sgn}(\lambda_2\lambda_3) = 1 \]
Experimental Designs and Causal Mechanisms

- *Statistical* vs. *Experimental* approach to the identification of causal mechanisms
- Can we design an experiment to facilitate the identification of causal mechanisms?
- Replace statistical assumptions with the assumptions about experimental design
- How do different experimental designs help or hinder the identification of causal mechanisms?
- Encourages experimentalists to be creative
- Technological developments facilitates the use of new designs

Single Experiment Approach

Key Identifying Assumptions

- **Sequential Ignorability**: conditional on treatment, mediator is random
- Violated if there are unobservables that affect mediator and outcome
- Not testable – sensitivity analysis at best

Identification Analysis

- Can never identify the sign of indirect effect
Causal Chain Approach

Key Identifying Assumptions
- Treatment in second experiment is random
- **No Manipulation Effect**: Manipulation of mediator has no direct effect on outcome
- **No Interaction**: Changing the mediator under the treatment produces same effect as changing mediator under the control

Identification Analysis
- More informative than single experiment
- In most cases, cannot identify the sign
- Statistical significant effects are neither necessary or sufficient

Limitations of the existing approaches:
- Single experiment approach requires the SI assumption
- Causal chain approach replaces it with other untestable assumptions that are unrelated to experimental designs
- Can we come up with a better experimental design?
Parallel Design

Key Identifying Assumptions
- No Manipulation Effect
- No Interaction Effect

Identification Analysis
- Always more informative than causal chain

Comparison of Assumptions

<table>
<thead>
<tr>
<th>Assumptions</th>
<th>Causal Chain</th>
<th>Parallel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random Treatment</td>
<td>😞</td>
<td>😊</td>
</tr>
<tr>
<td>Sequential Ignorability</td>
<td>😞</td>
<td>😞</td>
</tr>
<tr>
<td>Random Mediator</td>
<td>😞</td>
<td>😊</td>
</tr>
<tr>
<td>No Manipulation Effect</td>
<td>😞</td>
<td>😞</td>
</tr>
<tr>
<td>No Interaction Effect</td>
<td>😞</td>
<td>😞</td>
</tr>
</tbody>
</table>

- Difficult to justify the No Interaction Effect assumption
- Parallel design is more informative about causal mechanisms
Crossover Design

Key Identifying Assumptions
- **No Carryover Effect**: First experiment doesn’t affect second experiment
- **No Manipulation Effect**

Identification Analysis
- No information about carryover effect
- Use different crossover experiments

Crossover Encouragement Design

Key Identifying Assumptions
- **No Defier**: Encouragement doesn’t discourage anyone
- **No Carryover Effect**
- **No Manipulation Effect**

Identification Analysis
- Identify indirect effects for “pliable” units
- Can check carryover effect
Comparison of Assumptions

<table>
<thead>
<tr>
<th>Assumptions</th>
<th>Crossover</th>
<th>Crossover Encouragement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random Treatment</td>
<td>🙆</td>
<td>🙆</td>
</tr>
<tr>
<td>Sequential Ignorability</td>
<td>🙆</td>
<td>🙆</td>
</tr>
<tr>
<td>Random Mediator</td>
<td>🙆</td>
<td>🙆</td>
</tr>
<tr>
<td>Random Encouragement</td>
<td>🙆</td>
<td>🙆</td>
</tr>
<tr>
<td>No Manipulation Effect</td>
<td>🙆</td>
<td>🙆</td>
</tr>
<tr>
<td>No Interaction Effect</td>
<td>🙆</td>
<td>🙆</td>
</tr>
<tr>
<td>No Carryover Effect</td>
<td>🙆</td>
<td>🙆</td>
</tr>
<tr>
<td>No Defier</td>
<td>🙆</td>
<td>🙆</td>
</tr>
</tbody>
</table>

- Crossover design is the most powerful, but requires the no carryover effect assumption
- Longer washout period
- Crossover encouragement design can be applied even if mediator is not directly manipulable
- Subtle encouragement – less manipulation effect

Example from Behavioral Neuroscience

Question: What mechanism links low offers in an ultimatum game with “irrational” rejections?

- Two brain regions more active when unfair offer received (single experiment design)

Design solution: manipulate mechanisms with TMS

- Knoch et al. use TMS to manipulate — turn off — one of these regions, and then observes choices (parallel design)

We discuss the applicability of each design and the credibility of its identification assumptions in this context
Concluding Remarks

- Identification of causal mechanisms is difficult but is possible
- Additional assumptions are required

Two proposed strategies:
1. Sensitivity analysis to assess the robustness
2. New experimental designs to improve the credibility

- Offer a comprehensive set of statistical methods
- Derive the identification power of different experimental designs

Ongoing work:
- Application to political psychology experiments
- Experimental identification of causal effects of gene

Papers and Software

- “Experimental Identification of Causal Mechanisms”
- “Identification, Inference, and Sensitivity Analysis for Causal Mediation Effects.”
- “A General Approach to Causal Mediation Analysis.”
- “Causal Mediation Analysis in R.”
- All available at
 http://imai.princeton.edu/projects/mechanisms.html

- mediation: R package for causal mediation analysis
- Available at
 http://cran.r-project.org/web/packages/mediation/