Estimating Neighborhood Effects on Turnout from Geocoded Voter Registration Records

Michael Barber Kosuke Imai

Department of Politics
Princeton University

Waseda University

July 11, 2013
Motivation

- Do voters turn out more or less frequently when surrounded by those like them?
- Decades of research on turnout and demographic characteristics:
 - Older, educated, wealthy people vote more often
 - Whites vote more frequently than minorities
- But we know little about how your turnout is affected by the characteristics of other voters around you
- Challenges of neighborhood effects research:
 - Different voters live in different neighborhoods
 - cannot simply compare them
 - Neighborhood effects are confounded by electoral and other factors
 - require a large scale individual-level data collection
Overview of the Talk

- Theories:
 1. Psychological theories
 2. Mobilization theories

- Data:
 1. Labels & Lists, Inc: a non-partisan firm specializing in voter files
 2. 50 million geocoded voter registration records in FL, CA, and GA
 3. Past voter registration files for FL and CA

- Identification strategies:
 1. Cross-section difference-in-differences
 2. Panel difference-in-differences

- Findings:
 1. Turnout is affected by those you live near
 2. A 10 percentage point (ppt) increase in the out-group in your neighborhood leads to a 0.5 to 2 ppt decrease in your turnout
 3. Neighborhood effects persist even in non-competitive districts
Theories of Neighborhood Effects

- **Psychological theories:**
 1. **Threat**: you feel threatened and vote more often when surrounded by those different from you
 \[\Rightarrow \text{Neighborhood-majorities vote more often as minorities increase} \]
 2. **Empowerment**: you are more likely to express yourself when your neighbors are like you
 \[\Rightarrow \text{Neighborhood-minorities vote more often as their group size increases} \]

- **Mobilization theories:**
 1. **Individual**: campaigns target potential supporters regardless of their neighborhood
 \[\Rightarrow \text{No neighborhood effects} \]
 2. **Neighborhood**: campaigns target neighborhoods of potential supporters but single out potential voters
 \[\Rightarrow \text{Neighborhood-majorities vote more often than minorities} \]
Goals of the Project

- Estimate neighborhood effects at the census block level
- Consider partisan minority and racial minority neighborhood effects in the same framework
 - partisanship and ethnicity are both social identities
- Neighborhood effects differ from district or candidate effects
 - We examine the interaction between a voter and her neighbors
 - Interaction with candidates/districts:
 - coethnicity
 - majority-minority districts
Florida Cross-Section Data

- Voter files from 2004 and 2012
 - 10.5 million registered voters
 - 25 congressional districts
 - 2010 census block neighborhoods
 - 293,056 census blocks
 - Geocode addresses
 - Turnout: ‘02 and ‘10 elections

- Partisanship
 - 36% Republican
 - 40% Democratic
 - 20% Independent
 - 4% Other parties

- Racial Demographics
 - 14% Black
 - 17% Latino
 - 68% White
California Cross-Section Data

- Voter files from 2006 and 2012
 - 15 million registered voters
 - 53 congressional districts
 - 2010 census block neighborhoods
 - 383,892 census blocks
 - Geocode addresses
 - Turnout: ‘04 and ‘10 elections

- Partisanship
 - 30% Republican
 - 43% Democratic
 - 21% Independent
 - 5% Other parties

- Racial Demographics
 - 6% Black
 - 21% Latino
 - 65% White
Georgia Cross-Section Data

- Voter file from 2012
 - 4.6 million registered voters
 - 13 congressional districts
 - 2010 census block neighborhoods
 - 291,086 census blocks
 - Geocode addresses
 - Turnout: ‘10 elections

- Partisanship
 - 27% Republican
 - 22% Democratic
 - 51% Independent

- Racial Demographics
 - 33% Black
 - 3% Latino
 - 53% White
Census Block as a Neighborhood

Democrat
Republican
Non-partisan
Other Parties
Mixed Household
Census Blocks are Small Neighborhoods

Florida
Number of Registered Voters
Density

California
Number of Registered Voters
Density

Georgia
Number of Registered Voters
Density

Barber & Imai (Princeton) Neighborhood Effects Waseda (July 11, 2013)
Census Blocks and Administrative Boundaries

- Nation
 - States
 - Counties
 - Census tracts
 - Block groups
 - Census blocks
 - School districts
 - State legislative districts
 - Congressional districts
 - Precincts
 - School districts

Census Blocks Have Diverse Partisanship

Percent Democrat

Percent Republican

Percent Independent

Density

Florida

California

Georgia

Barber & Imai (Princeton)

Neighborhood Effects

Waseda (July 11, 2013)
Partisanship Measure Correlates Well with Vote Share

Florida

2008 Republican Pres Voteshare by Precinct (election results)
Percent Registered Republican (our measure)
0 20 40 60 80 100
0 20 40 60 80 100
correlation = .85

California

2008 Republican Pres Voteshare by Precinct (election results)
Percent Registered Republican (our measure)
0 20 40 60 80 100
0 20 40 60 80 100
correlation = .84

Georgia

2008 Republican Pres Voteshare by Precinct (election results)
Percent Registered Republican (our measure)
0 20 40 60 80 100
0 20 40 60 80 100
correlation = .84

Barber & Imai (Princeton) Neighborhood Effects Waseda (July 11, 2013)
Race Measure and Validation

- Florida and Georgia: self-reported race (more accurate)
- California: predicted using name and census characteristics
Racial Composition of Census Blocks

Barber & Imai (Princeton) Neighborhood Effects Waseda (July 11, 2013)
Cross-Section Identification Strategy

Cannot simply compare two voters in different neighborhoods

Our identification strategy:

(a) Democratic neighborhood

(b) Republican neighborhood

Difference-in-differences:
\[
(\bar{Y}_R^D - \bar{Y}_D^D) - (\bar{Y}_R^R - \bar{Y}_D^R)
\]
We analyze congressional districts separately for each election.

Average results across districts and elections.

Liner probability partisanship model with fixed effects:

\[Y_i = \alpha_{\text{group}[i]}^D + \beta^D \text{Dem}_i + \gamma^D \text{Dem}_i \times \overline{\text{Rep}_{\text{block}}[i]} \\
+ \delta_1^D \text{age}_i + \delta_2^D \text{age}_i^2 + \epsilon_i^D \]

where \(\alpha_{\text{group}[i]}^D\) is the fixed effects based on the full interaction between census blocks, gender, and race.

Fitted to a subset of Democrats and Republicans for each district.

Comparison within the same neighborhood, gender, and race.

Interpretation of \(\gamma\): percentage point (ppt) increase in turnout when the proportion of out-group increases by 1 ppt.
Modeling Racial Neighborhood Effects

- Partisanship neighborhood effects:

\[Y_i = \alpha^B_{\text{group}[i]} + \beta^B \text{Black}_i + \gamma^B \text{Black}_i \times \frac{\text{Non} - \text{Black}}{\text{block}[i]} + \delta_1^B \text{age}_i + \delta_2^B \text{age}_i^2 + \epsilon_i^B \]

where \(\alpha^B_{\text{group}[i]} \) is the fixed effects based on the full interaction between census blocks, gender, and partisanship

- Fitted to the entire data

- Comparison within the same neighborhood, gender, and partisanship

- Interpretation of \(\gamma \): percentage point (ppt) increase in turnout when the proportion of out-group increases by 1 ppt
Mapping the Statistical Model Back to Theories

<table>
<thead>
<tr>
<th>Psychological theories</th>
<th>Mobilization theories</th>
</tr>
</thead>
<tbody>
<tr>
<td>Threat</td>
<td>Individual</td>
</tr>
<tr>
<td>Empowerment</td>
<td>Neighborhood</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>sign of γ</th>
<th>+</th>
<th>–</th>
<th>0</th>
<th>–</th>
</tr>
</thead>
</table>
Barber & Imai (Princeton) Neighborhood Effects Waseda (July 11, 2013) 22 / 34

Neighborhood Effects from Cross-Section Analysis

-0.20 -0.16 -0.12 -0.08 -0.04 0.00 0.04 0.08
Republican x Percent Democrat
Democrat x Percent Republican
Independent x Percent Republican
Independent x Percent Democrat
Black x Percent non-Black
Latino x Percent non-Latino
White x Percent Non-White
Percentage Points

FL CA GA FL CA GA
Data Overview for Panel Analysis

- Geocode voters from old files in FL and CA
- Match voters between old and new files with name and birthdate
- Among matched calculate difference in
 - Neighborhood partisanship
 - Neighborhood racial composition
- Non-movers only

- **Florida**
 - 2012 voter file
 - 2004 voter file
 - Turnout: ’10 – ’02, ’08 – ’00
 - 40% match
 - 66% do not move
 - 80% do not change party

- **California**
 - 2012 voter file
 - 2006 voter file
 - Turnout: ’10 – ’02, ’08 – ’04
 - 44% match
 - 70% do not move
 - 80% do not change party
Change in Neighborhood Partisanship

Florida

Change in Neighborhood Percent Republican

Change in Neighborhood Percent Democratic

Change in Neighborhood Percent Independent

California

Density

-50 -30 -10 10 30 50

0 2 4 6 8 10 12

0 2 4 6 8 10 12

0 2 4 6 8 10 12

0 2 4 6 8 10 12

0 2 4 6 8 10 12

0 2 4 6 8 10 12
Change in Neighborhood Racial Composition

Change in Neighborhood Percent Black

Change in Neighborhood Percent Latino

Change in Neighborhood Percent White

Florida

California

Barber & Imai (Princeton) Neighborhood Effects Waseda (July 11, 2013)
Panel Identification Strategy

- Within-voter comparison for non-movers:

\[
Y_{i,t}^{R}, Y_{i,t+1}^{D}, \quad Y_{i',t}^{R}, Y_{i',t+1}^{D}
\]

- Difference-in-differences:

\[
(Y_{i,t+1}^{D} - Y_{i,t}^{R}) - (Y_{i',t+1}^{D} - Y_{i',t}^{R})
\]
The Statistical Models for Panel Analysis

- First-difference linear probability models:

\[
Y_{i,t+1} - Y_{it} = \alpha_{D\text{group}[i]}^D + \beta^D \text{Dem}_i + \delta_1^D \text{age}_i + \delta_2^D \text{age}_i^2 \\
+ \gamma^D \text{Dem}_i \times (\overline{\text{Rep}}_{\text{block}[i,t+1]} - \overline{\text{Rep}}_{\text{block}[i,t]}) + \eta_i^D
\]

\[
Y_{i,t+1} - Y_{it} = \alpha_{B\text{group}[i]}^B + \beta^B \text{Black}_i + \delta_1^B \text{age}_i + \delta_2^B \text{age}_i^2 \\
+ \gamma^B \text{Black}_i \times (\overline{\text{Non-Black}}_{\text{block}[i,t+1]} - \overline{\text{Non-Black}}_{\text{block}[i,t]}) + \eta_i^B
\]

where \(\alpha_{D\text{group}[i]}^D (\alpha_{B\text{group}[i]}^B)\) is the fixed effects based on the full interaction of census blocks, gender, and race (partisanship).

- Comparison within the same census block, gender, and race (partisanship) groups

- Interpretation of \(\gamma\): percentage point (ppt) increase in turnout when the proportion of out-group increases by 1 ppt
Neighborhood Effects from Panel Analysis

Barber & Imai (Princeton)
Neighborhood Effects
Waseda (July 11, 2013)
Two theories are consistent with empirical findings:

<table>
<thead>
<tr>
<th>Psychological theories</th>
<th>Mobilization theories</th>
</tr>
</thead>
<tbody>
<tr>
<td>Threat</td>
<td>Empowerment</td>
</tr>
<tr>
<td>sign of δ_1</td>
<td>+</td>
</tr>
</tbody>
</table>

Neighborhood mobilization theory:
Campaigns target neighborhoods of potential supporters but single out potential voters
\[\Rightarrow \text{Prediction: Neighborhood effects largest in competitive districts} \]
Cross-Section Evidence

- Uncompetitive districts (hollow) to other districts (solid)
- Neighborhood effects persist in uncompetitive districts
- Uncompetitive districts at both time periods (hollow)
- Competitive districts at both time periods (solid)
Panel Neighborhood Effect Heterogeneity

- Threat theory \implies neighborhood majority
- Empowerment theory \implies neighborhood minorities
- Mobilization theory \implies neighborhood majorities/minorities
Turnout is a function of a voter’s demographics and their environment.

Voters turn out less when they live near people not like them.

A 10 ppt increase in the out-group in your neighborhood leads to a roughly 0.5 to 2 ppt decrease in your turnout.

True for both partisanship and race.

True across a variety of geographies and electoral environments.

Mobilization alone cannot explain neighborhood effects.

Greatest support to the psychological empowerment theory.

Utilize experimental data (Moving-to-the-Opportunity Program).
Send additional comments and suggestions to

kimai@princeton.edu
Voters Live in Diverse Neighborhoods

Barber & Imai (Princeton) Neighborhood Effects Waseda (July 11, 2013)
Voters’ Neighborhoods are Not Always Segregated

Percent Black Neighbors for Blacks

Percent Latino Neighbors for Latinos

Percent White Neighbors for Whites

Florida

California

Barber & Imai (Princeton)

Neighborhood Effects

Waseda (July 11, 2013)
Little Evidence of Geographic Sorting - FL & CA

Barber & Imai (Princeton) Neighborhood Effects Waseda (July 11, 2013)
Little Evidence of Racial Geographic Sorting

Barber & Imai (Princeton) Neighborhood Effects Waseda (July 11, 2013)
Matched Voters are Different From Unmatched Voters

Barber & Imai (Princeton) Neighborhood Effects Waseda (July 11, 2013)