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1 Matrix and System of Linear Equations

Definition 1 A m × n matrix A is a rectangular array of numbers with m rows and n columns
and written as

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

...
am1 am2 · · · amn


aij is called the (i, j)th element of A.

Note that a special case of matrix is a vector where either m = 1 or n = 1. If m = 1 and n > 1,
then it is called a row vector. If m > 1 and n = 1, then it is called a column vector. A vector has
a nice geometric interpretation where the direction and length of the vector are determined by its
elements. For example, the vector A = [1 3] has the opposite direction and twice as long as the
vector B = [−1/2 − 3/2]. We will discuss vectors in more detail later in this chapter. Now, we
define the basic operations of matrices.

Definition 2 Let A and B be m× n matrices.

1. (equality) A = B if aij = bij.

2. (addition) C = A + B if cij = aij + bij and C is an m× n matrix.

3. (scalar multiplication) Given k ∈ R, C = kA if cij = kaij where C is an m× n matrix.

4. (product) Let C be an n× l matrix. D = AC if dij =
∑n

k=1 aikckj and D is an m× l matrix.

5. (transpose) C = A> if cij = aji and C is an n×m matrix.

Example 1 Calculate A + 2B>, AB, and BA using the following matrices.

A =
[

1 2 −1
3 1 3

]
, B =

 −2 5
4 −3
2 1

 ,

The basic algebraic operations for matrices are as follows:

Theorem 1 (Algebraic Operations of Matrices) Let A, B, C be matrices of appropriate sizes.

1. Addition:
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(a) A + B = B + A and A + (B + C) = (A + B) + C

(b) There exists a unique C such that A + C = A and we denote C = O.

(c) There exists a unique C such that A + C = O and we denote C = −A.

2. Multiplication:

(a) k(lA) = (kl)A, k(A+B) = kA+kB, (k+ l)A = kA+ lA, and A(kB) = k(AB) = (kA)B
for any k, l ∈ R.

(b) A(BC) = (AB)C.

(c) (A + B)C = AC + BC and C(A + B) = CA + CB.

3. Transpose:

(a) (A>)> = A.

(b) (A + B)> = A> + B>.

(c) (AB)> = B>A>.

(d) (kA)> = kA>.

Example 2 Calculate (ABC)> using the following matrices.

A =
[

1 2 3
−2 0 1

]
, B =

 0 1
2 2
3 −1

 , C =
[

3 2
3 −1

]
,

There are some important special types of matrices.

Definition 3 Let A be an m× n matrix.

1. A is called a square matrix if n = m.

2. A is called symmetric if A> = A.

3. A square matrix A is called a diagonal matrix if aij = 0 for i 6= j. A is called upper triangular
if aij = 0 for i > j and called lower triangular if aij = 0 for i < j.

4. A diagonal matrix A is called an identity matrix if aij = 1 for i = j and is denoted by In.

In particular, we have AIn = InA = A for any square matrix A. For a square matrix, there is
another operator called trace.

Definition 4 If A is an n× n matrix, then the trace of A denoted by tr(A) is defined as the sum
of all the main diagonal elements of A. That is, tr(A) =

∑n
i=1 aii.

Some useful facts about trace operators are given below.

Theorem 2 (Trace Operator) Let A and B be matrices of appropriate sizes.

1. tr(kA) = k tr(A) for any k ∈ R.

2. tr(A + B) = tr(A) + tr(B).

3. tr(AB) = tr(BA).
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4. tr(A>) = tr(A).

5. tr(A>A) ≥ 0.

If we start out with an m× n matrix and delete some, but not all, of its rows or columns, then we
obtain a submatrix. For example, C in Example 2 is a submatrix of the following matrix. 1 2 3

3 2 1
3 −1 2


A matrix can be partitioned into submatrices, and such a matrix is called partitioned matrices.
Partitioned matrices can be manipulated in the same way (called block manipulation) provided
that submatrices are of appropriate sizes.

Example 3

A =
[

A11 A12

A21 A22

]
, B =

[
B11 B12

B21 B22

]
, AB =

[
A11B11 + A12B21 A11B12 + A12B22

A21B11 + A22B21 A21B12 + A22B22

]
.

We now study a special type of square matrices and formulate the notion corresponding to the
reciprocal of a nonzero real number.

Definition 5 An n×n matrix A is called nonsingular or invertible if there exists an n×n matrix
B such that AB = BA = In We call such B an inverse of A. Otherwise, A is called singular or
noninvertible.

Example 4 Show that B is an inverse of A (or A is an inverse of B).

A =
[

2 3
2 2

]
, B =

[
−1 3

2
1 −1

]
.

We prove some important properties about the inverse of a matrix.

Theorem 3 (Uniqueness of Inverse) The inverse of a matrix, if it exists, is unique.

We denote the unique inverse of A by A−1.

Theorem 4 (Properties of Inverse) Let A and B be nonsingular n× n matrices.

1. AB is nonsingular and (AB)−1 = B−1A−1.

2. A−1 is nonsingular and (A−1)−1 = A.

3. (A>)−1 = (A−1)>.

One application of inverting a matrix is to solve a system of linear equations. In fact, matrices can
be motivated in terms of linear equations. Consider a set of m linear equations of the form

y1 = a11x1 + a12x2 + . . . + a1nxn

y2 = a21x1 + a22x2 + . . . + a2nxn

...
...

ym = am1x1 + am2x2 + . . . + amnxn
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Then, its matrix representation is Y = AX where

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

...
am1 am2 · · · amn

 , X =


x1

x2
...

xm

 , Y =


y1

y2
...

ym

 .

We call A a coefficient matrix. With this notation, we can see that A−1 (provided that A is
nonsingular) solves this system since we obtain X = A−1Y by premultiplying the equation by A−1.

Example 5 Confirm that [
2 3
2 2

]−1

=
[
−1 3

2
1 −1

]
solve the following system of linear equations by using the inverse of matrix.

2x1 + 3x2 = 1
2x1 + 2x2 = 2

Since we do not yet know how to find the inverse of a matrix in general, we rely on high-school
algebra to solve a system of linear equations. To formalize what we mean by “high-school algebra”,
we introduce the following definitions.

Definition 6 Elementary row (column) operations on an m× n matrix A includes the following.

1. Interchange rows (columns) r and s of A.

2. Multiply row (column) r of A by a nonzero scalar k 6= 0.

3. Add k times row (column) r of A to row (column) s of A where r 6= s.

An m×n matrix A is said to be row (column) equivalent to an m×n matrix B if B can be obtained
by applying a finite sequence of elementary row (column) operations to A.

Example 6 Show that A is row equivalent to B.

A =

 1 2 4 3
2 1 3 2
1 −1 2 3

 , B =

 2 4 8 6
1 −1 2 3
4 −1 7 8

 ,

Now, we can use these operations to characterize systems of linear equations.

Theorem 5 (Row Equivalence and Linear Equations) Let AX = B and CX = D be two
linear systems with m equations and n unknowns. If the augmented matrices [A B] and [C D] are
row equivalent, then the linear systems have the same solutions.

Finally, to solve systems of linear equations using high-school algebra, we need one more concept.

Definition 7 An m × n matrix A is said to be in reduced row echelon form if it satisfies the
following properties.

1. All rows consisting entirely of zeros, if any, are at the bottom of the matrix.
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2. By reading from left to right, the first nonzero entry in each row that does not consist entirely
of zeros is a 1, called the leading entry of its row.

3. If rows i and i + 1 are two successive rows that do not consist entirely of zeros, then the
leading entry of row i + 1 is to the right of the leading entry of row i.

4. If a column contains a leading entry of some row, then all other entries in that column are
zero.

If A satisfies 1, 2, and 3, but not 4, then it is said to be in row echelon form. A similar definition
can be applied to (reduced) column echelon form.

Example 7 A is in row echelon form, and B is in reduced row echelon form.

A =


1 5 0 2 −2 4
0 1 0 3 4 8
0 0 0 1 7 2
0 0 0 0 0 0

 , B =


1 0 0 0 −2 4
0 1 0 0 4 8
0 0 0 1 7 2
0 0 0 0 0 0

 ,

Finally, we define two methods that can be used to solve systems of linear equations.

Theorem 6 (Gaussian and Gauss-Jordan Elimination) A system of linear equations AX =
Y can be solved by using Gaussian (Gauss-Jordan) elimination, which consists of the following two
steps:

1. Use elementary operations to transform the augmented matrix [AB] to the matrix [CD] in
(reduced) row echelon form.

2. Solve the linear system corresponding to the augmented matrix [CD] using back substitution.

Example 8 Solve the following system of linear equations using the Gaussian elimination.

x1 + 2x2 + 3x3 = 9
2x1 − x2 + x3 = 8

3x1 − x3 = 3
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2 Determinant and Inverse of Matrix

In this section, we will learn how to find the inverse of a matrix.

Definition 8 A permutation of a finite set of integers S = {1, 2, . . . , n} is a bijective function
f : S 7→ S. A permutation is said to have an inversion if a larger integer precedes a smaller one.
A permutation is called even (odd) if the total number of inversions is even (odd).

That is, if S = {1, 2, 3}, then f defined by f(1) = 3, f(2) = 2, f(3) = 1 is an odd permutation.
Now, we are ready to define determinant of a matrix.

Definition 9 Let A be an n × n matrix. Then, the determinant of A denoted by |A| or det(A)
is

∑
(±)a1f(1)a2f(2) . . . anf(n) where the summation is over all permutations f : S 7→ S with S =

{1, 2, . . . , n}. The sign is + (−) if the corresponding permutation is even (odd).

Now, we compute the determinants of the following matrices. It should be noted that there is no
easy method for computing determinants for n > 3.

Example 9 What are the determinants of 1× 1, 2× 2, and 3× 3 matrices?

We examine some basic properties of determinants. In particular, there is an important relationship
between the singularity and the determinant of a matrix.

Theorem 7 (Determinants) Let A and B be n× n matrices.

1. |In| = 1 and | − In| = (−1)n.

2. |kA| = kn|A| for k ∈ R.

3. |A| = |A>|.

4. A is nonsingular if and only if |A| 6= 0.

5. |AB| = |A||B|.

6. If A is nonsingular, then |A−1| = |A|−1.

According to Definition 9, computing the determinant of an n×n matrix can be very cumbersome
if n is large. We now develop a method which reduces the problem to the computation of the
determinant of an (n− 1)× (n− 1) matrix so that we can repeat the process until we get to a 2× 2
matrix.

Definition 10 Let A be an n× n matrix.

1. Let Mij be the (n − 1) × (n − 1) submatrix of A obtained by deleting the ith row and jth
column of A. Then, |Mij | is called the minor of aij.

2. The cofactor of Aij of aij is defined as Aij = (−1)i+j |Mij |

Now, the following theorem gives us a new method to compute determinants.

Theorem 8 (Cofactor Expansion) Let A be an n × n matrix. Then, for any i and j, |A| =∑n
j=1 aijAij and |A| =

∑n
i=1 aijAij
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Example 10 Find the determinant of the following matrix using cofactor expansion.

A =


1 2 −3 4

−4 2 1 3
3 0 0 −3
2 0 −2 3

 .

The following will show how one can use cofactors to calculate the inverse of a matrix.

Definition 11 Let A be an n × n matrix. The adjoint of A, adjA, is the matrix whose (i, j)
element is the cofactor Aji of aji. That is,

adjA =


A11 A21 . . . An1

A12 A22 . . . An2
...

...
...

...
A1n A2n . . . Ann

 .

Example 11 Compute the adjoint of the following matrix.

A =

 3 −2 1
5 6 2
1 0 −3

 .

Finally, the inverse of a square matrix can be written as follows.

Theorem 9 (Inverse of a Matrix) If A is an n× n matrix and |A| 6= 0, then

A−1 =
1
|A|

adjA

The theorem illustrates why |A| 6= 0 is required for A−1 to exist.

Example 12 Compute the inverse of A in Example 11.

Now, you can solve a system of linear equations provided its solution exists: i.e., the inverse of the
coefficient matrix exists. We introduce another method to solve a system of linear equations.

Theorem 10 (Cramer’s Rule) Consider a system of n linear equations in n unknown parame-
ters with the coefficient matrix A so that we can write Y = AX

y1 = a11x1 + a12x2 + . . . + a1nxn

y2 = a21x1 + a22x2 + . . . + a2nxn

...
...

yn = an1x1 + an2x2 + . . . + annxn

If |A| 6= 0, then the system has the unique solution

x1 =
|A1|
|A|

, x2 =
|A2|
|A|

, . . . , xn =
|An|
|A|

,

where Ai is the matrix obtained from A by replacing its ith column by Y .
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Example 13 Apply the Cramer’s Rule to the following system of linear equations.

−2x1 + 3x2 − x3 = 1
x1 + 2x2 − x3 = 4

−2x1 − x2 + x3 = −3
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3 Real Vector Spaces

In the very first chapter, we learned the concept of ordered pairs. We can give a geometric
representation to an ordered pair of real numbers, (x, y) with x, y ∈ R. This is what we call
Euclidean 2-space. In particular, we consider a pair of perpendicular lines called coordinate axes
(one horizontal line called x-axis and the other vertical one called y-axis) intersecting at a point
O, called the origin. Then, we can associate each point in the plane with each ordered pair of real
numbers. The set of all such points are denoted by R2. We can also associate each ordered pair
with the directed line segment called vector from the origin to a point P = (x, y). Such a vector is
denoted by −−→OP where O is the tail of the vector and P is its head. We generalize this idea.

Definition 12 A vector in the plane from the point P = (x1, y1) to Q = (x2, y2) is a 2× 1 matrix
with two components (x2 − x1, y2 − y1). We denote it by −−→PQ.

This indicates that −−→PQ is equal to another vector
−−→
OP ′ from the origin where P ′ = (x2−x1, y2−y1).

In other words, a vector can be described by its direction and its length alone. Now, it is important
to develop a geometric understanding of the basic vector operations.

Definition 13 Let u = (x1, y1) and v = (x2, y2) be vectors in the plane. Then,

1. (equality) u = v if x1 = x2 and y1 = y2.

2. (addition) u + v = (x1 + x2, y1 + y2).

3. (scalar multiplication) ku = (kx1, ky1) for any k ∈ R.

Example 14 Consider u = (2, 3), v = (3,−4), and w = (1, 2). Draw u + v, u− w, and 3w.

We can generalize these definitions to vectors in space, R3, by adding the third coordinate axis,
z-axis. A vector in space is 3 × 1 matrix. It is also possible to extend beyond 3 dimensions and
talk about Rn, which is called real vector spaces. The following basic algebraic operations hold for
any real vector spaces.

Axiom 1 Let u, v, and w be any vectors in Rn, and let c, k ∈ R. Then,

1. u + v = v + u

2. u + (v + w) = (u + v) + w

3. u + 0 = 0 + u = u where 0 = (0, . . . , 0).

4. u + (−u) = 0

5. c(u + v) = cu + cv

6. (c + k)u = cu + ku

7. c(ku) = (ck)u

8. 1u = u

Just like we did in the first chapter for real numbers, these axioms are sufficient to give basic results
such as 0u = 0, c0 = 0, and (−1)u = −u. Now, we are ready to study the structure of real vector
spaces. First, we introduce some key concepts. The length of a vector in plane can be defined as
follows.
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Theorem 11 (Pythagorean Theorem) The length of the vector v = (v1, v2) in R2 is
√

v2
1 + v2

2,
and is denoted by ||v||.

A vector whose length is 1 is called a unit vector. Similarly, one can define the distance between
two vectors, u = (u1, u2) and v = (v1, v2), as ||u− v|| =

√
(u1 − v1)2 + (u2 − v2)2. This definition

can be generalized easily to real vector spaces.

Example 15 Compute the length of the vector v = (1, 2, 3), and the distance between v and u =
(−4, 3, 5).

Another important concept is the inner product of two vectors.

Definition 14 Let u = (u1, u2) and v = (v1, v2) be vectors in plane.

1. The inner product (or dot product) is defined on R2 as u1v1 + u2v2 and is denoted by u · v.

2. u and v are said to be orthogonal if u · v = 0.

Again, it is easy to generalize this definition to real vector spaces.

Example 16 Compute the inner product of u = (2, 3, 2) and v = (4, 2,−1).

Observe that if we view the vectors u and v as n×1 matrices, then we can obtain another expression
for the inner product, u>v.

Theorem 12 (Inner Product) Let u, v, and w be vectors in Rn, and k ∈ R.

1. u · v = v · u.

2. u · (v + w) = u · v + u · w.

3. u · (kv) = k(u · v) = (ku) · v.

4. u · u ≥ 0 and u · u = 0 implies u = 0.

An important application of the inner product is the following theorem.

Theorem 13 (Cauchy-Schwartz Inequality) Let u and v be vectors in Rn. Then,

(u · v)2 ≤ ||u||2||v||2

Using this theorem, we can prove a more general version of the triangular inequalities that we
proved for the real number system.

Theorem 14 (Triangular Inequalities) Let u and v be vectors in Rn. Then,

1. ||u + v|| ≤ ||u||+ ||v||.

2. |||u|| − ||v||| ≤ ||u− v||.

For example, if you replace u and v with a scalar, you obtain usual triangular inequalities for the
real number system.
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4 Linear Independence

In this section, we further examine the structure of real vector spaces.

Definition 15 Let v1, v2, . . . , vk be vectors in a real vector space V .

1. A vector v in V is called a linear combination of v1, v2, . . . , vk if v = a1v1 + a2v2 + . . . + akvk

for some real numbers a1, a2, . . . , ak.

2. A set of vectors S = {v1, v2, . . . , vk} is said to span V if every vector in V is a linear
combination of v1, v2, . . . , vk.

3. v1, v2, . . . , vk are linearly dependent if there exist constants a1, a2, . . . , ak not all zero such
that a1v1 + a2v2 + . . . + akvk = 0. Otherwise, v1, v2, . . . , vk are called linearly independent.

In other words, vectors v1, . . . , vk in Rn are linearly dependent if and only if the linear system
AX = 0 with A = [v1v2 . . . vk] and X = (a1, . . . , ak) has a nonzero solution (or equivalently
|A| 6= 0). A set of vectors which spans a real vector space V completely describes V because every
vector in V can be constructed as a linear combination of the vectors in that set. Let’s apply these
concepts to some examples.

Example 17 Answer the following two questions.

1. Do v1 = (1, 2, 1), v2 = (1, 0, 2), and v3 = (1, 1, 0) span R3?

2. Are v1 = (1, 0, 1, 2), v2 = (0, 1, 1, 2), and v3 = (1, 1, 1, 3) in R4 linearly dependent?

Notice also that any set of k vectors in Rn is linearly dependent if k > n.

Theorem 15 (Linear Independence) Let V be a real vector space.

1. Let S1 and S2 be finite subsets of V . Suppose S1 ⊂ S2. If S1 is linearly dependent, so is S2.
If S2 is linearly independent, so is S1.

2. The nonzero vectors v1, v2, . . . , vk in V are linearly dependent if and only if one of the vectors
vj is a linear combination of the preceding vectors v1, v2, . . . , vj−1.

There can be many sets of vectors that describe a given real vector space V . In particular, such a set
can contain vectors which constitute a linear combination of one another. To obtain a “minimal”
set of vectors which completely describes V , we develop the following concept.

Definition 16 The vectors v1, v2, . . . , vk in a real vector space V are said to form a basis if they
span V and are linearly independent.

For example, v1 = (1, 0, 0), v2 = (0, 1, 0), and v3 = (0, 0, 1) form a natural basis for R3. Note that
there can be infinitely many bases for a given real vector space. For example, c1v1, c2v2, and c3v3

where c1, c2, c3 ∈ R also form a basis.

Example 18 Show that the set S = {v1, v2, v3, v4} where v1 = (1, 0, 1, 0), v2 = (0, 1,−1, 2), v3 =
(0, 2, 2, 1), and v4 = (1, 0, 0, 1) forms a basis for R4.

Now, we show the main result about a basis of a real vector space. Namely, although there exist
infinitely many bases for a given real vector space, all the bases have the same number of vectors.

11



Theorem 16 (Basis) Let v1, v2, . . . , vk and w1, w2, . . . , wk be vectors in a real vector space V .

1. If S = {v1, v2, . . . , vk} is a basis for V , then every vector in V can be written in one and only
one linear combination of the vectors in S.

2. If S = {v1, v2, . . . , vk} is a basis for V and T = {w1, w2, . . . , wn} is a linearly independent
set of vectors in V , then n ≤ k.

3. If S = {v1, v2, . . . , vk} and T = {w1, w2, . . . , wn} are bases for V , then k = n.

The last result of the previous theorem implies that the number of vectors in two different bases
for a particular real vector space is the same. In particular, every basis of Rn contains n vectors.
This amounts to the following concept.

Definition 17 The dimension of a real vector space V is the number of vectors in a basis for V .
We often write dimV .

Example 19 What is the dimension of the real vector space V spanned by S = {v1, v2, v3} where
v1 = (0, 1, 1), v2 = (1, 0, 1), v3 = (1, 1, 2).

Next, We introduce a method to find a basis for the real vector space spanned by a set of vectors.

Definition 18 Let A be an m × n matrix. The rows of A, considered as vectors in Rn, span a
subspace of Rn, called the row space of A. Similarly, the columns of A span a subset of Rm called
the column space of A.

Theorem 17 (Row and Column Spaces) If A and B are two m× n row (column) equivalent
matrices, then the row (column) spaces of A and B are identical.

Example 20 Find a basis for the subspace V of R5 that is spanned by S = {v1, v2, v3, v4} where
v1 = (1,−2, 0, 3,−4), v2 = (3, 2, 8, 1, 4), v3 = (2, 3, 7, 2, 3), and v4 = (−1, 2, 0, 4,−3).

Definition 19 Let A be an m× n matrix.

1. The dimension of the row (column) space of A is called the row (column) rank of A.

2. If the row (column) rank of A is equal to m (n), it is said to be of full row (column) rank.

It follows from the definition that if A and B are row (column) equivalent, then row (column)
ranks of A and B are the same.

Example 21 Compute the row rank of a matrix A = [v1 v2 v3 v4] where the vectors are defined in
Example 20

There is the important relationship between rank and singularity. We give the following theorem
without proof.

Theorem 18 (Rank and Singularity) Let A be a n×n square matrix. A is nonsingular if and
only if A is of full rank, i.e., rankA = n.
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5 Eigenvalues, Eigenvectors, and Definiteness

As the final topic of this chapter, we study eigenvalues and eigenvectors. Although we will not
prove many of the theorems, their results are important and will be frequently applied in statistics.
First, we give the definition of eigenvalues and eigenvectors.

Definition 20 Let A be an n×n square matrix. λ ∈ R is called an eigenvalue of A if there exists
a nonzero vector x such that Ax = λx. Every nonzero vector x ∈ Rn satisfying this equation is
called an eigenvector of A associated with the eigenvalue λ.

Note that x = 0 always satisfies the equation, but it is not an eigenvector.

Example 22 Confirm that λ1 = 2 and λ2 = 3 are the eigenvalues and x1 = (1, 1) and x2 = (1, 2)

are their associated eigenvectors of
[

1 1
−2 4

]
.

The connection between eigenvalues and singularity is critical.

Theorem 19 (Eigenvalues) Let A be an n× n square matrix and λ1, . . . , λn be its eigenvalues.

1. If A is diagonal, then its diagonal elements are the eigenvalues.

2.
∑n

i=1 λi = tr(A).

3.
∏n

i=1 λi = |A|. In particular, A is singular if and only if 0 is an eigenvalue of A.

Before we state the key theorem, we need one more concept.

Definition 21 Let A be an n × n square matrix. Then, |λIn − A| is called the characteristic
polynomial of A. The equation |λIn −A| = 0 is called the characteristic equation of A.

The next theorem shows how one can find eigenvalues.

Theorem 20 (Characteristic Polynomial) Let A be an n × n matrix. The eigenvalues of A
are the real roots of the characteristic polynomial of A. A is said to be diagonalizable if all the
roots of its characteristic polynomial are real and distinct.

The word “diagonalizable” comes from the fact that the diagonal matrix whose nonzero elements
are the eigenvalues of A represent a linear transformation, a function mapping from one real vector
space to another. L : V 7→ W is a linear transformation if it satisfies L(v + w) = L(v) + L(w) and
L(cv) = cL(v) for any vector v ∈ V and w ∈ W . One important linear transformation is what is

called projection defined by L : R3 7→ R2 and represented by the matrix A =
[

1 0 0
0 1 0

]
so that

for any vector v = (v1, v2, v3) ∈ R3 we have L(v) = (v1, v2).

Example 23 Find the eigenvalues and eigenvectors, if they exist, of

 1 2 −1
1 0 1
4 −4 5

 and
[

0 1
−1 0

]
.

Definition 22 An n× n square matrix A is called orthogonal if A>A = In.

In particular, the orthogonal matrix is invertible, and hence A−1 = A>. We end this chapter with
the concept of definiteness of a matrix.
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Definition 23 Let A be an n× n symmetric matrix A and x be a column vector in Rn.

1. A is positive definite (positive semidefinite) if x>Ax > 0 (x>Ax ≥ 0) for any x 6= 0.

2. A is negative definite (negative semidefinite) if x>Ax < 0 (x>Ax ≤ 0) for any x 6= 0.

If A fits none of the above definitions, then it is called indefinite. From the definition, one imme-
diately sees that A is positive (negative) definite if and only if −A is negative (positive) definite.
Positive (negative) definite matrices have some important properties.

Theorem 21 (Positive and Negative Definiteness) Let A be an n× n symmetric matrix A

1. A is positive (negative) definite if and only if all of its eigenvalues are positive (negative).

2. If A is positive (negative) definite, then A is invertible and A−1 is postive (negative) definite.

3. If A is positive definite, then |A| > 0.

4. If A is positive definite, then there exists a upper triangular matrix U such that A = U>U
(Cholesky decomposition).

The first part of the theorem implies that if A is a diagonal matrix and positive definite, then all
of its diagonal elements must be positive. The Cholesky decomposition can be seen as a “square
root” of a symmetric matrix. One way to check the definiteness of matrices is to compute eigen
values and use Theorem 21 (1). However, there is an easier way to check the definiteness.

Definition 24 Let A be an n× n square matrix and k be an integer with 1 ≤ k ≤ n.

1. The kth order principal submatrix of A is an k × k submatrix of A which can be constructed
by deleting the n− k columns and the same n − k rows. If the last n − k columns and rows
are deleted, then the resulting submatrix is called the kth order leading principal submatrix.

2. The determinant of a kth order (leading) principal submatrix of A is called a kth order
(leading) principal minor of A.

There is a special relationship between principal minors and definiteness of a matrix.

Theorem 22 (Principal Minor and Definiteness) Let A be an n × n symmetric matrix and
k be an integer with 1 ≤ k ≤ n.

1. A is positive definite if and only if the kth order leading principal minor is positive for all k.

2. A is positive semi-definite if and only if every principal minor is greater than or equal to zero
for all k.

3. A is negative definite if and only if the kth order leading principal minor has the same sign
as (−1)k for all k.

4. A is negative semi-definite if and only if every kth order principal minor is zero or has the
same sign as (−1)k for all k.

An example is given below.

Example 24 Check the definiteness of the following matrices.

A =

 −1 1 0
1 −1 0
0 0 −2

 and B =

 1 2 0
2 4 5
0 5 6


We are done with linear algebra!
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