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@ Joint distribution: (Yi,...,Yn) ~ f(Y1,...,Yn | 0) where 6 € ©

@ |dea: Choose the estimate of # such that the likelihood of
obtaining the sample you actually obtained is maximized

@ Likelihood function: L(6 | Yy,...,Yn) = f(Yi,...,Yn|0)
@ Log-likelihood function: /(6| Yi,...,Yn) =logL(0 | Yi,..., Yn)
@ Function of # given the data

@ Likelihood Principle: If Y and Y are two samples and
L(0|Y) oc L(6 | Y), then inferences about & one would draw from
Y and Y are the same

@ Maximum likelihood estimation (MLE):

0, = argmax L(6| Yy,...,Yn) = argmax /(0| Ys,...,Yp)
bco 0co
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e Model: Y; | X; "P A°(XT B, 02)
@ Or equivalently: Y; = X' 8 + ¢; where ¢; A0, o?)
@ Likelihood and log-likelihood functions:

n

Lo(B,0° | Y, X) = (2%02)‘”/2exp{_2%2 (Yi—XiTB)Z}

i=1
n

W(B.02 | V. X) = —Dlog2r — Zlogo? — 1S (Y- X B2

n\~» ) 2 2 g 20-2 ! 1

i=1

@ Solving the first order condition (and checking the second order
condition) yields the following MLE:

-1 n n
1

n
B= (Zx,-X,-T) D XY and 6% =% (Y- XY
i=1 i=1

i=1



@ 6Og: True value of ¢
@ 0,: MLE of 6 as a function of sample size
@ Theorem: If Yy, ..., Yy " £(Y; | 6y), then
0n = argmaxgcg In(0 | Y) N o under some regularity conditions
@ Identification: the maximum value of L(6 | Y) exists and is unique



@ Show 6, -2 & = argmax,.o E{log f(Y; | 0)}
© Recall Jensen’s inequality: For any concave (convex) function g(-)
and a random variable X, we have E{g(X)} < g(E(X))

(E{g(X)} = 9(E(X)))
© Show that Kullback-Leibler Divergence is non-negative, i.e.,

E(log f(Y; | 60) —log f(Y; [ 8)) = 0

© Argue that the equality holds if and only if § = 6,



@ Score statistic:

s = Lo | Y)‘

00 0=0

@ Mean of score is zero:

E(si(6o))

0
IO 1Y)| (Vi1 0)aY,

9:90f(
_ /ﬁf(v-w)] dv; = 0
- 00 N =g, T
@ Fisher information:

Q(6o) = E(si(f0)si(f0)") = V(si(6o))



@ Information Equality:
E(Hi(60)) = —(6o)
where the Hessian matrix is given by,

02

Hi(0) = 90007

o 1Y),

@ Proof:
@ Using the basic rules of calculus, show

82
fYilo),_, dY; — E(si(6o)si(fo) ")
=bo

E(si(60)si(f0) ") = 20007 (

@ Show that the first term in the above equation is zero



@ Taylor expansion around 6:
0 = $n(fn) ~ sn(6o) + Hn(00)(0n — 6o)
@ Asymptotic distribution:

n —1 n
Vn(l, —60) =~ <—:—7 > Hi(9o)) vn (% > Si(9o))
i— i—

~ /
~~ ~~

P,Q(60)1 LLN(0,9(60))
D

LNV, (o, Q(eo)—1)

@ Approximate variance: V(dn) ~ 1Q(6p)"

@ Variance estimator: V(,) = —H(8,)"



@ Parameters: § = (3, 0?)
@ Score statistic:

L[ EX(r-x9)
snlf) = [ +204IIY—Xﬁ||2]

@ Hessian matrix:

Ho(6s) — [ %( 1XTX —LXT(Y - XB) ]

Y - X)X L——HY X312

204
AXTX 0
)[4 3
204

2 (XTX)~" 0 ]

@ Information matrix:

Q(60) = E(si(60)si(6o) " | X) = —E <w

@ Approximate variance:

V(0, | X) ~




@ If §, is the MLE of 6, the MLE of g(6) is g(#,) for any function g(:)

@ But, to improve the asymptotic normal approximation of the
sampling distribution, we can use transformations

@ 0<(0,00) — logh
996(01)—>Iog(

%) logistic
Qoec(-1,1)—1 (%) Fisher’s z

@ In normal regression, let's change o2 to v = log o2. Then,

0 Ho?
Gy (B 1Y X) = 70 (8,02 V. X)

Oy do2
B n 1 2
= —eel) {Zexp(v) ~ Zexpzy) | X }




@ Cramer-Rao Inequality: Let §, be any estimator.

B 8T
OB 6%01[5(5,,){nIE(s,-(Go)s,-(HO)T)} 1{3%)@(9,,)}

where E(0,) = [ Gaf(Y | 6p)dY
@ For any asymptotically unbiased estimator d,,, we have

~ 1 B
V(f,) > 59(00) 1

@ MLE achieves the Cramer-Rao Lower Bound for any 6,

@ MLE is asymptotically uniformly minimum variance unbiased
estimator (UMVUE)



© Show 5
o E(ln) = E{ena—eolog 2 90)}

Q Show 5 5
Cov (9,,, 26, 09 1(Y | 00)) - W]E(e,,)

© By the Covariance inequality,

atz E(Hn){;; (gn)}T < V(en)V{ 9 1og f(Y|9o)}



@ What happens if the model is wrong?
e True model: Y; "= a(Yi)
@ Misspecified model: Y; bR f(Y; | 6o)

e 0, -2 9, such that

. gy
0y = argmin | lo Y:) dY;
’ E’ee'/ AN

Kullback—Leibler divergence

@ Asymptotic distribution:
Vi(Br—00) = N (0, E(—Hi(00))"E(si(60)s(00) " JE(—Hi(06)) ")
@ Information equality does not hold



@ Sandwich estimator:
1 -1 1<
bread = (_EH"(H")) , and meat = E;s;(ﬁn)si(en)T
1=

@ Clustering: a wrong likelihood function
@ Cluster robust standard error:

meat = QZC: { (Z si(fn) ) (;Zi s,-(én))T}

@ “Correct” standard error for “wrong” estimate



@ Logit model for binary outcome Y; € {0,1}:

Yi ndcp Bernoulli(7;)

exp(X;'8) 1
T+exp(X'8)  1+exp(—XB)
@ Logit: logit(m;) = log(m;/(1 — 7)) = X' B
@ Probit: () = XT3

Ty

0

@ monotone increasing
@ symmetric around 0

probability

@ maximum slope at 0

. @ logit coef. = probit
' ' ' ' ' ' ' coef x1.6
6

00 02 04 06 08 1

linear predictor



@ The latent variable or the “Utility”: Y;*
@ The Model:
v 1 if Y >0
10 ifyr<o
Yr = X'B+e with E(g)=0

i

@ Logit: ¢ g logistic (the density is exp(—¢;)/{1 + exp(—¢;)}?)
@ Probit: ¢; "= A7(0,1)

@ The variance of Y} is not identifiable

@ The “cutpoint” is not identifiable



@ Likelihood and log-likelihood functions:

n
LB Y, X) = [[="(1 —m)'™"
i=1

n

h(B1Y,X) = Y {Yilogm+ (1 - Y;)log(1 —m)}

i=1

@ Logit model:
e Score function: s,(8) = 31, (Y; — m)X;
o Hessian: Ha(8) = — 37 mi(1 — m) XX <0
o Approximate variance: V(j3, | X) ~ {320, mi(1 — m) X; X}~
o Globally concave



@ Find A, such that s,(f,) = 0

@ Mean Value Theorem: If f(x) is continuous and differentiable on
[a, b], then there exists ¢ € [a, b] such that

) _ f(b) - f(a)
ax Mo " b2

@ Thus, for 6 € [0, 4,],
sn(01) = sp(01) = sn(6n) = Ha(6)(09 — 6n)
@ The algorithm: converges at f,,
o+ = 9() — H,(0D) 5,0

@ Fisher scoring algorithm: use Q(#0)~" (always positive-definite)
@ Global maxima vs. local maxima: different starting values



@ Logistic regression coefficients are NOT quantities of interest

® Predicted probability: (x) = Pr(Y =1 | X = x) = {2202
@ Attributable risk (risk difference): 7(xy) — 7(xo)
@ Relative risk: w(xq)/7(x0)

@ Odds and odds ratio: 11538() and %

@ Average Treatment Effect:

E{Pr(Yi=1|Ti=1,X)-Pr(Yi=1|T;=0,X)}

@ MLE: plug in 3,

@ Asymptotic distribution: the Delta method (a bit painfull)
m(x)?

" {1 +exp(xTBo)}?

Vi) - 7(x) 25 N (o xTQwo)—1x)



@ Bayesians: parameters are random variables

likelihood  prior

posterior ,_;\? /\9\
o0 v) = PYLOPO) v o))

/MYwmwwe

marginal likelihood

@ Bernstein — Von Mises Theorem: For a large sample, Bayes
estimate is close to the MLE. The posterior distribution of the
parameter around the posterior mean is also close to the
distribution of the MLE around the truth,

@ Sample 0 from N (0, —Hn(A,)~") and compute “Bayes” estimate
and confidence interval of g(é) for any function g(-)
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@ Unknown data generating process: Y; e E
@ Want to know V() where 0, = g(Y1,..., Y)
@ Approximate it with V;_n(é,,) where F,, is the empirical CDF

® Realworld: F = Ys,..., Y, = 0,
@ Bootstrap world: Fp = Y{,.... Y, = 0,=9g(Y{,....Y})
2
hoot = BZ ( b~ R Zonb’)
b’ 1
@ Asymptotic approximation:
may not be so small small
Ve(n) R Ve (ln) R bhen

@ Bootstrap percentile confidence intervals
@ Parametric bootstrap: Replace F, with F5_



@ Real world: F = VYj,..., Y, = biasg = E¢(6,) — 6(F)
@ Bootstrap world: F, = Y7,. .., Y, = biasg = ]E,f_n(é;‘,) - G(I:'n)

L —

where 0(F,) = 0 and Bz (95) = 4 S5 055

@ Bootstrap percentile confidence interval: take 100 - «/2 and
100 - (1 — «/2) percentiles

® bias corrected estimator: §, — bias = 20, — £ S5, 0 ,
@ Bias-corrected confidence interval: see Efron and Tibshirani

@ An example: Ratio estimator 0, = 37, Yi/ 327, X;
@ biasg = E(6,) — E(Y;)/E(X;) #0

@ Computational note: resample indices, not data themselves
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@ Null hypothesis: Hy : 6 € ©9 C © with H; : 0 € © \ ©g
@ “Nested” models: Hy : g1(8) =---=9gk(#) =0
@ Unlike F test, nonlinear constraints are allowed
@ Likelihood ratio statistic:
restricted MLE

——N—
sup La(0 | Y) —
[ZSSH _ Ln(an | Y)

supLn(0 1Y) La(6n]Y)
0co

An(Y) = € (0,1)

MLE
@ Asymptotic distribution:
—2log An(Y) -2 x2

where K = dim(©) — dim(©): the difference between the number
of free parameters in © and ©g



L H0:¢9:90WithH1 :97590
@ Taylor expansion (again!):

(0o | Y) = I(Bn| Y)+8n(0n | Y)(én—ao)+%(9n—eo)THn(én)(én—oo)
@ Under the null hypothesis,
—2logAn(Y) = —2{lh(6o | Y) = h(bn| ¥)}
V(0 — 60)" —:—7 :i Hi(0) v/n(6n — 6o)

“TN(0,9(60)~ )

Q

TN (0,9(6) )
NN

2
— XK



@ Wald test: No need to calculate 8,

Wo = ng(8n)T{g™M(@n) Q0) g™ (Bn)} ' 9(6) L xK
= —9(0n) T {gV(0n) Ha(0n) ' g (B)} " a(0n) -% E

@ (Rao’s) Score test: No need to calculate 4,
Rn = —Sn(en) Hn(en) Sn(an) —> XK

@ LRT requires the calculation of both 4, and 6,
@ But, they are all asymptotically equivalent!



Likelihood-Ratio Test

Wald Test

a

a-hat



@ Likelihood ratio test works only for comparison of nested models
— what about non-nested models?

@ In-sample (training) error vs. Out—ofA—sampIe (test) error
= 5 7y L(Yi, F(X)) vs. E{L(Y;, (X))}
@ Prediction error is measured with loss function L(-,-)
@ classification error (0 — 1 loss): 1{Y; # #(X;)}
@ squared error: (Y; — £(X;))?
© absolute error: |Y; — f(X)|
© deviance: —2 - loglikelihood

@ If you have a lot of data, you can randomly split the data into:

@ training data: fit the model
@ validation data: estimate prediction error for model selection
@ test data: test the predictive performance of the final model

@ But, we are usually not that fortunate...
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@ Recall the bias-variance decomposition:

E{(6—0)*} = {E(0—0)}* + V(9
- 2 ——

-~

MSE bias2 variance

@ Assume the model: Y; = f(Xj) + ¢; and E(¢;) =0
@ Expected prediction error at X;:

E{(Y/®" —(X)2} = {E(f(X) — f(X)}2 + V(F(X)) + V(e)

@ Making f complex = low bias, high variance
@ Sample average prediction error (SAPE) of linear regression:

—ZE{ Ve HX)P) = Z{E BTX— FOO)Y + 0% 4 0

model complexity =—> penalty



@ How to estimate the sample average prediction error for a new
data set (i.e., test data)?
@ Use of training data = (typically) downward bias:

1 ¢ rain ¥ 1 L <
SAPE = ;,EL(Y,-“‘ HG) + 7,;cov(y;esr, yiest)
1= 1=
@ Linear regression with squared error:

1 o= e 2K .o
CP = ,_.' Z(Gt.ram) + Tatrajn
=1

@ Maximum likelihood with deviance:
2K
AIC = —2-loglikelihood + =~ P, _2. E(loglikelihood,)

@ Bayesian Information Criterion: BIC = —2 - loglikelihood + K - log n
@ Select the model with the smallest Cp/AIC/BIC
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@ Data are scarce = cannot create a separate validation set
@ K-fold cross validation:

@ Estimated average population prediction error:
{(Y”eW—f(X )2} = ZL (Y;, 170 (X))

where () (.) is the fitted model without the group (i) to which
observation i/ belongs

@ |leave-one-out cross validation (K = n): unbiased but high
variance, also computationally demanding




@ Likelihood inference: very general and powerful tool

@ Asymptotic consistency and efficiency

@ Report quantities of interest rather than model parameters
@ Be aware of what “robust” standard error can and cannot do
@ Parametric assumptions need to be made with care

@ Model selection and validation: predictive criteria



